
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS352H: Computer Systems Architecture

Topic 8: MIPS Pipelined Implementation

September 29, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

MIPS Pipeline

Five stages, one step per stage
IF: Instruction fetch from memory
ID: Instruction decode & register read
EX: Execute operation or calculate address
MEM: Access memory operand
WB: Write result back to register

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

Pipeline Performance

Assume time for stages is
100ps for register read or write
200ps for other stages

Compare pipelined datapath with single-cycle datapath

200ps200psj

500ps200ps100 ps200psbeq

600ps100 ps200ps100 ps200psR-format

700ps200ps200ps100 ps200pssw

800ps100 ps200ps200ps100 ps200pslw

Total timeRegister
write

Memory
access

ALU opRegister
read

Instr fetchInstr

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Pipeline Speedup

If all stages are balanced
i.e., all take the same time
Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

If not balanced, speedup is less
Speedup due to increased throughput

Latency (time for each instruction) does not decrease

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Pipelining and ISA Design

MIPS ISA designed for pipelining
All instructions are 32-bits

Easier to fetch and decode in one cycle
c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats
Can decode and read registers in one step

Load/store addressing
Can calculate address in 3rd stage, access memory in 4th stage

Alignment of memory operands
Memory access takes only one cycle

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Hazards

Situations that prevent starting the next instruction in the
next cycle
Structure hazards

A required resource is busy
Data hazard

Need to wait for previous instruction to complete its data
read/write

Control hazard
Deciding on control action depends on previous instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Structure Hazards

Conflict for use of a resource
In MIPS pipeline with a single memory

Load/store requires data access
Instruction fetch would have to stall for that cycle

Would cause a pipeline “bubble”

Hence, pipelined datapaths require separate
instruction/data memories

Or separate instruction/data caches

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Data Hazards

An instruction depends on completion of data access by a
previous instruction

add $s0, $t0, $t1
sub $t2, $s0, $t3

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Forwarding (aka Bypassing)

Use result when it is computed
Don’t wait for it to be stored in a register
Requires extra connections in the datapath

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Load-Use Data Hazard

Can’t always avoid stalls by forwarding
If value not computed when needed
Can’t forward backward in time!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the next
instruction
C code for A = B + E; C = B + F;

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

11 cycles13 cycles

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Control Hazards

Branch determines flow of control
Fetching next instruction depends on branch outcome
Pipeline can’t always fetch correct instruction

Still working on ID stage of branch

In MIPS pipeline
Need to compare registers and compute target early in the pipeline
Add hardware to do it in ID stage

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Stall on Branch

Wait until branch outcome determined before fetching next
instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Branch Prediction

Longer pipelines can’t readily determine branch outcome
early

Stall penalty becomes unacceptable

Predict outcome of branch
Only stall if prediction is wrong

In MIPS pipeline
Can predict branches not taken
Fetch instruction after branch, with no delay

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

More-Realistic Branch Prediction

Static branch prediction
Based on typical branch behavior
Example: loop and if-statement branches

Predict backward branches taken
Predict forward branches not taken

Dynamic branch prediction
Hardware measures actual branch behavior

e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

Pipeline Summary

Pipelining improves performance by increasing instruction
throughput

Executes multiple instructions in parallel
Each instruction has the same latency

Subject to hazards
Structure, data, control

Instruction set design affects complexity of pipeline
implementation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

MIPS Pipelined Datapath

WB

MEM

Right-to-left
flow leads to
hazards

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

Pipeline registers

Need registers between stages
To hold information produced in previous cycle

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

Pipeline Operation

Cycle-by-cycle flow of instructions through the pipelined
datapath

“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used

c.f. “multi-clock-cycle” diagram
Graph of operation over time

We’ll look at “single-clock-cycle” diagrams for load &
store

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

IF for Load, Store, …

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

ID for Load, Store, …

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

EX for Load

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

MEM for Load

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

WB for Load

Wrong
register
number

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

Corrected Datapath for Load

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 28

EX for Store

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 29

MEM for Store

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 30

WB for Store

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

Multi-Cycle Pipeline Diagram

Form showing resource usage

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

Multi-Cycle Pipeline Diagram

Traditional form

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 34

Pipelined Control (Simplified)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 35

Pipelined Control

Control signals derived from instruction
As in single-cycle implementation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 36

Pipelined Control

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 37

Concluding Remarks

ISA influences design of datapath and control
Datapath and control influence design of ISA
Pipelining improves instruction throughput
using parallelism

More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control

