CS352H: Computer Systems Architecture

Lecture 5: MIPS Integer ALU

September 10, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Integer Addition

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 - +7:
 0000 0000 ... 0000 0111

 -6:
 1111 1111 ... 1111 1010

 +1:
 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from -ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Throw Hardware At It: Money is no Object!

Using c_{i} for CarryIn_i $c_{2} = b_{1}c_{1} + a_{1}c_{1} + a_{1}b_{1}$ and $c_{1} = b_{0}c_{0} + a_{0}c_{0} + a_{0}b_{0}$

Substituting for c_1 , we get: $c_2 = a_1 a_0 b_0 + a_1 a_0 c_0 + a_1 b_0 c_0 + b_1 a_0 b_0 + b_1 a_0 c_0 + b_1 b_0 c_0 + a_1 b_1$

Continuing this to 32 bits yields a fast, but unreasonably expensive adder

Just how fast?

Assume all gate delays are the same regardless of fan-in

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

The basic formula can be rewritten:

- $\bullet \mathbf{c}_{i+1} = \mathbf{b}_i \mathbf{c}_i + \mathbf{a}_i \mathbf{c}_i + \mathbf{a}_i \mathbf{b}_i$
- $c_{i+1} = a_i b_i + (a_i + b_i) c_i$
- Applying it to c_2 , we get:
 - $\mathbf{c}_2 = \mathbf{a}_1 \mathbf{b}_1 + (\mathbf{a}_1 + \mathbf{b}_1)(\mathbf{a}_0 \mathbf{b}_0 + (\mathbf{a}_0 + \mathbf{b}_0)\mathbf{c}_0)$
- Define two "signals" or abstractions:
 - Generate: $g_i = a_i * b_i$
 - Propagate: $p_i = a_i + b_i$
- Redefine c_{i+1} as:
 - $\bullet \mathbf{c}_{i+1} = \mathbf{g}_i + \mathbf{p}_i * \mathbf{c}_i$
- So $c_{i+1} = 1$ if
 - $\mathbf{g}_i = 1 \text{ (generate) or}$
 - $\mathbf{p}_i = 1$ and $\mathbf{c}_i = 1$ (propagate)

Our logic equations are simpler:

$$\mathbf{c}_1 = \mathbf{g}_0 + \mathbf{p}_0 \mathbf{c}_0$$

$$\mathbf{c}_2 = \mathbf{g}_1 + \mathbf{p}_1 \mathbf{g}_0 + \mathbf{p}_1 \mathbf{p}_0 \mathbf{c}_0$$

- $\mathbf{z}_3 = \mathbf{g}_2 + \mathbf{p}_2 \mathbf{g}_1 + \mathbf{p}_2 \mathbf{p}_1 \mathbf{g}_0 + \mathbf{p}_2 \mathbf{p}_1 \mathbf{p}_0 \mathbf{c}_0$
- $\mathbf{c}_4 = \mathbf{g}_3 + \mathbf{p}_3\mathbf{g}_2 + \mathbf{p}_3\mathbf{p}_2\mathbf{g}_1 + \mathbf{p}_3\mathbf{p}_2\mathbf{p}_1\mathbf{g}_0 + \mathbf{p}_3\mathbf{p}_2\mathbf{p}_1\mathbf{p}_0\mathbf{c}_0$

- How much better (16-bit adder)?
 - Ripple-carry: $16 * T_{add} = 16 * 2 = 32$ gate delays
 - Carry-lookahead: $T_{add} + max (p_i, g_i) = 2 + 2 = 4$
 - Much better, but still too profligate
- What if we apply another level of this abstraction?
 - Use the four-bit adder on the previous slide as a building block
 - Define P and G signals
 - $\blacksquare P_0 = p_3 p_2 p_1 p_0$
 - $\blacksquare G_0 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0$
 - Similarly for $P_1 P_3$ and $G_1 G_3$
 - **Derive equations for** $C_1 C_4$
 - $\square C_1 = G_0 + P_0 c_0$
 - $\square C_2 = G_1 + P_1 G_0 + P_1 P_0 c_0, \text{ etc.}$
 - See discussion in Appendix C.6

16-bit adder performance = T_{add} + max (P_i , G_i) = 2 + 2 + 1 = 5 (with thrifty hardware)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Shifters

Two kinds:

Logical: value shifted in is always "0"

Arithmetic: sign-extend on right shifts

What about n-bit, rather than 1-bit, shifts?Want a fast shifter

Combinatorial Shifter from MUXes

Unsigned Multiplication

Paper and pencil example (unsigned):

Multiplicand	1000
Multiplier	1 0 0 1
	1 0 0 0
	0 0 0 0
	0000
	1 0 0 0
	0 1 0 0 1 0 0 0

- \blacksquare m bits x n bits = m+n bit product
- Binary makes it easy:
 - $\blacksquare 0: place 0 \qquad (0 x multiplicand)$
 - 1: place copy(1 x multiplicand)

Unsigned Combinatorial Multiplier

Stage i <u>accumulates</u> $A * 2^{i}$ if $B_{i} == 1$

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

How Does it Work?

- At each stage shift A left (x2)
- Use next bit of B to determine whether to add in shifted multiplicand
- Accumulate 2n bit partial product at each stage

Sequential Multiplication Hardware

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Observations

One clock per multiply cycle

- ~32 clock cycles per integer multiply
- Vs. one cycle for an add/subtract
- Half of the bits in the multiplicand are always zero
 - 64-bit adder is wasted
- Zeros inserted in left of multiplicand as shifted
 - Least significant bits of product unchanged once formed

Instead of shifting multiplicand to left, shift product to right!

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

Uses multiple adders

Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor \leq dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Next Lecture

- Floating point
 - Rest of Chapter 3