CS352H: Computer Systems Architecture

Lecture 6: MIPS Floating Point

September 17, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Floating Point

- Representation for dynamically rescalable numbers
 - Including very small and very large numbers, non-integers
- Like scientific notation
 - -2.34×10^{56}
 - +0.002 × 10⁻⁴
 - \blacksquare +987.02 × 10⁹
- In binary
 - $= \pm 1.xxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits double: 11 bits		single: 23 bits double: 52 bits
S	Exponent	Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit $(0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \le |\text{significand}| \le 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 0000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110 \Rightarrow actual exponent = 254 - 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $= \pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110 \Rightarrow actual exponent = 2046 - 1023 = +1023
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $= \pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2⁻⁵²

Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - **S** = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 01111110_2$
 - Double: $-1 + 1023 = 1022 = 01111111110_2$
- Single: 1011111101000...00
- Double: 101111111101000...00

Floating-Point Example

 What number is represented by the single-precision float 11000000101000...00

■ **S** = 1

- Fraction = $01000...00_2$
- Fxponent = $10000001_2 = 129$

$$\mathbf{x} = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

= (-1) × 1.25 × 2²
= -5.0

Denormal Numbers

Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

Smaller than normal numbers

- allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$X = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations
of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction $\neq 000...0$
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - $\bullet 9.999 \times 10^1 + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $\bullet 9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands
 - $\bullet 9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^{2}
- 4. Round and renormalize if necessary
 - **1.002** \times 10²

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $\blacksquare 1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $\bullet 1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
 - 1.0212×10^{6}
- 4. Round and renormalize if necessary
 - 1.021×10^{6}
- **5**. Determine sign of result from signs of operands
 - +1.021 × 10^{6}

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $\bullet \quad 1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- **5**. Determine sign: $+ve \times -ve \Rightarrow -ve$
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- **FP** multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, squareroot
 - **FP** \Leftrightarrow integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - Iwc1, Idc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

Single-precision arithmetic

add.s, sub.s, mul.s, div.s
e.g., add.s \$f0, \$f1, \$f6

Double-precision arithmetic

add.d, sub.d, mul.d, div.d
e.g., mul.d \$f4, \$f4, \$f6

Single- and double-precision comparison

c.xx.s, c.xx.d (xx is eq, lt, le, ...)
Sets or clears FP condition-code bit
e.g. c.lt.s \$f3, \$f4

Branch on FP condition code true or false

bc1t, bc1f
e.g., bc1t TargetLabel

FP Example: °F to °C

```
C code:

float f2c (float fahr) {

return ((5.0/9.0)*(fahr - 32.0));

}
```

fahr in \$f12, result in \$f0, literals in global memory space

```
Compiled MIPS code:
```

```
f2c: lwc1 $f16, const5($gp)
lwc2 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra
```


FP Example: Array Multiplication

- $X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

```
    Addresses of x, y, z in $a0, $a1, $a2, and i, j, k in $s0, $s1, $s2
```


FP Example: Array Multiplication

MIPS code:

li \$t1, 32	# \$t1 = 32 (row size/loop end)				
li \$s0, 0	# i = 0; initialize 1st for loop				
L1: li \$s1, 0	# j = 0; restart 2nd for loop				
L2: li \$s2, 0	# k = 0; restart 3rd for loop				
sll \$t2, \$s0, 5	5 # \$t2 = i * 32 (size of row of x)				
addu \$t2, \$t2, \$s1 # \$t2 = i * size(row) + j					
sll \$t2, \$t2, 3 # \$t2 = byte offset of [i][j]					
addu \$t2, \$a0, \$t2 # \$t2 = byte address of x[i][j]					
I.d \$f4, 0(\$t2) # \$f4 = 8 bytes of x[i][j]					
L3: sll \$t0, \$s2, 5 # \$t0 = k * 32 (size of row of z)					
addu \$t0, \$t0, \$s1 # \$t0 = k * size(row) + j					
sll \$t0, \$t0, 3 # \$t0 = byte offset of [k][j]					
addu \$t0, \$a2, \$t0 # \$t0 = byte address of z[k][j]					
I.d \$f16, 0(\$t0	0) # \$f16 = 8 bytes of z[k][j]				

FP Example: Array Multiplication

sll \$t0, \$s0, 5 # \$t0 = i*32 (size of row of y)
addu \$t0, \$t0, \$s2 # \$t0 = i*size(row) + k
sll \$t0, \$t0, 3 # \$t0 = byte offset of [i][k]
addu \$t0, \$a1, \$t0 # \$t0 = byte address of y[i][k]
I.d \$f18, 0(\$t0) # \$f18 = 8 bytes of y[i][k]
mul.d \$f16, \$f18, \$f16 # \$f16 = y[i][k] * z[k][j]
add.d \$f4, \$f4, \$f16 # f4=x[i][j] + y[i][k]*z[k][j]
addiu \$s2, \$s2, 1 # \$k k + 1
bne \$s2, \$t1, L3 # if (k != 32) go to L3
s.d \$f4, 0(\$t2) # x[i][j] = \$f4
addiu \$s1, \$s1, 1 # \$j = j + 1
bne \$s1, \$t1, L2 # if (j != 32) go to L2
addiu \$s0, \$s0, 1 # \$i = i + 1
bne \$s0, \$t1, L1 # if (i != 32) go to L1

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Interpretation of Data

Bits have no inherent meaning

- Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - **8** \times 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), …
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

- Optional variations
 - I: integer operand
 - P: pop operand from stack
 - R: reverse operand order
 - But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Right Shift and Division

- Left shift by *i* places multiplies an integer by 2^i
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - $\blacksquare 11111011_2 >> 2 = 11111110_2 = -2$
 - Rounds toward $-\infty$

• c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ☺
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

Next Lecture

- Performance evaluation
- Micro-architecture introduction
 - Chapter 4.1 4.4