CS3521 : Computer Systems Architecture

Lecture 6: MIPS Floating Point

September 17, 2009

Floating Point

■ Representation for dynamically rescalable numbers

- Including very small and very large numbers, non-integers

■ Like scientific notation
■ -2.34×10^{56}
■ $+0.002 \times 10^{-4}$
■ $+987.02 \times 10^{9}$
■ In binary

$\square \pm 1 . x_{x x x x x x x_{2}} \times 2^{\text {yyyy }}$

- Types float and double in C

Floating Point Standard

■ Defined by IEEE Std 754-1985
■ Developed in response to divergence of representations

- Portability issues for scientific code

■ Now almost universally adopted

- Two representations
- Single precision (32-bit)
- Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits
 double: 11 bits

single: 23 bits

double: 52 bits
Fraction

$x=(-1)^{S} \times(1+$ Fraction $) \times 2^{(\text {Exponent-Bias) }}$

- S : sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative $)$
- Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$
- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored

■ Exponent: excess representation: actual exponent + Bias

- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

■ Exponents 00000000 and 11111111 reserved

- Smallest value

■ Exponent: 00000001
\Rightarrow actual exponent $=1-127=-126$

- Fraction: $000 \ldots 00 \Rightarrow$ significand $=1.0$

■ $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

- Largest value

■ exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$

- Fraction: $111 \ldots 11 \Rightarrow$ significand ≈ 2.0

■ $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

■ Exponents $0000 \ldots 00$ and $1111 \ldots 11$ reserved

- Smallest value

■ Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$

- Fraction: $000 \ldots 00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: $111 \ldots 11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
- all fraction bits are significant
- Single: approx 2^{-23}
- Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision

■ Double: approx 2^{-52}

- Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

■ Represent -0.75
■ $-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$
■ $\mathrm{S}=1$

- Fraction $=1000 \ldots 00_{2}$
- Exponent $=-1+$ Bias
- Single: $-1+127=126=01111110_{2}$
- Double: $-1+1023=1022=01111111110_{2}$

■ Single: 1011111101000... 00
■ Double: 1011111111101000... 00

Floating-Point Example

- What number is represented by the single-precision float 11000000101000... 00
- $\mathrm{S}=1$
- Fraction $=01000 \ldots 00_{2}$

■ Fxponent $=10000001_{2}=129$
$\square \mathrm{x}=(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)}$
$=(-1) \times 1.25 \times 2^{2}$
$=-5.0$

Denormal Numbers

■ Exponent $=000 \ldots 0 \Rightarrow$ hidden bit is 0

$$
x=(-1)^{s} \times(0+\text { Fraction }) \times 2^{- \text {Bias }}
$$

- Smaller than normal numbers
- allow for gradual underflow, with diminishing precision

■ Denormal with fraction $=000 \ldots 0$

Infinities and NaNs

■ Exponent $=111 . . .1$, Fraction $=000 \ldots 0$

- \pm Infinity

■ Can be used in subsequent calculations, avoiding need for overflow check
■ Exponent $=111 \ldots 1$, Fraction $\neq 000 \ldots 0$
■ Not-a-Number (NaN)

- Indicates illegal or undefined result

■ e.g., 0.0 / 0.0
■ Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
- $9.999 \times 10^{1}+1.610 \times 10^{-1}$
- 1. Align decimal points
- Shift number with smaller exponent
- $9.999 \times 10^{1}+0.016 \times 10^{1}$
- 2. Add significands
- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$

■ 3. Normalize result \& check for over/underflow

- 1.0015×10^{2}
- 4. Round and renormalize if necessary
- 1.002×10^{2}

Floating-Point Addition

- Now consider a 4-digit binary example
- $1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$
- 1. Align binary points
- Shift number with smaller exponent
- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$
- 2. Add significands
- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$
- 3. Normalize result \& check for over/underflow
- $1.000_{2} \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
- $1.000_{2} \times 2^{-4}($ no change $)=0.0625$

FP Adder Hardware

■ Much more complex than integer adder

- Doing it in one clock cycle would take too long

■ Much longer than integer operations

- Slower clock would penalize all instructions

■ FP adder usually takes several cycles

- Can be pipelined

FP Adder Hardware

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Floating-Point Multiplication

- Consider a 4-digit decimal example
- $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
- For biased exponents, subtract bias from sum
- New exponent $=10+-5=5$
- 2. Multiply significands
- $1.110 \times 9.200=10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result \& check for over/underflow
- 1.0212×10^{6}
- 4. Round and renormalize if necessary
- 1.021×10^{6}
- 5. Determine sign of result from signs of operands

■ $+1.021 \times 10^{6}$

Floating-Point Multiplication

- Now consider a 4-digit binary example
- $1.000_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}(0.5 \times-0.4375)$
- 1. Add exponents
- Unbiased: $-1+-2=-3$
- Biased: $(-1+127)+(-2+127)=-3+254-127=-3+127$
- 2. Multiply significands
- $1.000_{2} \times 1.110_{2}=1.1102 \Rightarrow 1.110_{2} \times 2^{-3}$
- 3. Normalize result \& check for over/underflow
- $1.110_{2} \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
- $1.110_{2} \times 2^{-3}$ (no change)
- 5. Determine sign: $+\mathrm{ve} \times-\mathrm{ve} \Rightarrow-\mathrm{ve}$
- $-1.110_{2} \times 2^{-3}=-0.21875$

FP Arithmetic Hardware

■ FP multiplier is of similar complexity to FP adder

- But uses a multiplier for significands instead of an adder

■ FP arithmetic hardware usually does

- Addition, subtraction, multiplication, division, reciprocal, squareroot
■ FP \leftrightarrow integer conversion
■ Operations usually takes several cycles
- Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
- Adjunct processor that extends the ISA
- Separate FP registers

■ 32 single-precision: $\$ f 0, \$$ f1, \ldots \$f31

- Paired for double-precision: $\$ \mathrm{f0} / \$ \mathrm{f1}, \$ \mathrm{f} / \$ \mathrm{f3}, \ldots$

■ Release 2 of MIPs ISA supports 32×64-bit FP reg's

- FP instructions operate only on FP registers
- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact
- FP load and store instructions
- Iwc1, Idc1, swc1, sdc1
- e.g., Idc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
- add.s, sub.s, mul.s, div.s
- e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
- add.d, sub.d, mul.d, div.d
- e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
- c.xx.s, c. $x x . \mathrm{d}(x x$ is eq, lt, le, ...)
- Sets or clears FP condition-code bit
- e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
- bc1t, bc1f
- e.g., bc1t TargetLabel

FP Example: ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

- C code:
float f2c (float fahr) \{
return ((5.0/9.0)*(fahr - 32.0));
\}
- fahr in $\$$ f12, result in $\$ \mathrm{f0}$, literals in global memory space
- Compiled MIPS code:
f2c: Iwc1 \$f16, const5(\$gp)
lwc2 \$f18, const9(\$gp)
div.s \$f16, \$f16, \$f18

Iwc1 \$f18, const32(\$gp)
sub.s $\$$ f18, $\$$ f12, $\$$ f18
mul.s \$f0, \$f16, \$f18
jr \$ra

FP Example: Array Multiplication

- $\mathrm{X}=\mathrm{X}+\mathrm{Y} \times \mathrm{Z}$
- All 32×32 matrices, 64-bit double-precision elements
- C code:
void mm (double x[][],
double y[][], double z[][]) \{
int i, j, k; for ($\mathrm{i}=0 ; \mathrm{i}!=32 ; \mathrm{i}=\mathrm{i}+1$)
for ($\mathrm{j}=0 ; \mathrm{j}!=32 ; \mathrm{j}=\mathrm{j}+1$)
for $(k=0 ; k!=32 ; k=k+1)$
$x[i][j]=x[i][j]$
$+y[i][k]$ * $z[k][j] ;$
\}
- Addresses of $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in $\$ \mathrm{a} 0, \$ \mathrm{a} 1, \$ \mathrm{a} 2$, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

```
    li $t1,32 # $t1 = 32 (row size/loop end)
    li $s0,0 # i = 0; initialize 1st for loop
L1:li $s1,0 # j = 0; restart 2nd for loop
L2: li $s2, 0 # k = 0; restart 3rd for loop
    sll $t2, $s0,5 # $t2 = i * 32 (size of row of x)
    addu $t2, $t2, $ s1 # $t2 = i * size(row) + j
    sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
    addu $t2, $a0, $t2 # $t2 = byte address of x[i]j]]
    l.d $f4,0($t2) # $f4 = 8 bytes of x[i][j]
L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
    addu $t0, $t0, $ s1 # $t0 = k * size(row) + j
    sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
    addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]
    l.d $f16,0($t0) # $f16 = 8 bytes of z[k][j]
```


FP Example: Array Multiplication

```
sll $t0, $s0,5 # $t0 = i*32 (size of row of y)
addu $t0, $t0, $s2 # $t0 = i*size(row) + k
    sll $t0, $t0, 3 # $t0 = byte offset of [i][k]
    addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]
    l.d $f18,0($t0) # $f18 = 8 bytes of y[i][k]
    mul.d $f16, $f18, $f16 # $f16 = y[j][k] * z[k][j]
    add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j]
    addiu $s2, $s2, 1 # $k k + 1
    bne $s2, $t1, L3 # if (k!= 32) go to L3
    s.d $f4, 0($t2) # [[i][j] = $f4
    addiu $s1, $s1, 1 # $j = j + 1
    bne $s1, $t1, L2 # if (j != 32) go to L2
    addiu $s0, $s0, 1 # $i = i + 1
    bne $s0, $t1, L1 # if (i != 32) go to L1
```


Accurate Arithmetic

■ IEEE Std 754 specifies additional rounding control

- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
- Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Interpretation of Data

- Bits have no inherent meaning
- Interpretation depends on the instructions applied

■ Computer representations of numbers

- Finite range and precision
- Need to account for this in programs

Associativity

■ Parallel programs may interleave operations in unexpected orders

- Assumptions of associativity may fail

| | | $(x+y)+z$ | $x+(y+z)$ |
| ---: | ---: | ---: | ---: | ---: |
| x | $-1.50 E+38$ | | $-1.50 E+38$ |
| y | $1.50 E+38$ | $0.00 E+00$ | |
| z | 1.0 | 1.0 | $1.50 E+38$ |
| | | $1.00 E+00$ | $0.00 E+00$ |

- Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

■ Originally based on 8087 FP coprocessor

- 8×80-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
- Converted on load/store of memory operand
- Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
- Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i)	FIADDP mem/ST(i)	FICOMP	FPATAN
FISTP mem/ST(i)	FISUBRP mem/ST(i) FIMULP	FIUCOMP	F2XMI
FLDPI	mem/ST(i) FIDIVRP mem/ST(i)	FSTSW AX/mem	FCOS
FLD1	FSQRT		FPTAN
FLDZ	FABS		FPREM
	FRNDINT		FPSIN

- Optional variations
- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4×128-bit registers

■ Extended to 8 registers in AMD64/EM64T
■ Can be used for multiple FP operands
■ 2×64-bit double precision

- 4×32-bit double precision
- Instructions operate on them simultaneously
- Single-Instruction Multiple- $\underline{\text { Data }}$

Right Shift and Division

$■$ Left shift by i places multiplies an integer by 2^{i}
$■$ Right shift divides by 2^{i} ?

- Only for unsigned integers
- For signed integers
- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
- $11111011_{2} \gg 2=11111110_{2}=-2$
\square Rounds toward $-\infty$
■c.f. $11111011_{2} \ggg 2=00111110_{2}=+62$

Who Cares About FP Accuracy?

- Important for scientific code

■ But for everyday consumer use?
■ "My bank balance is out by $0.0002 \not \subset!$ " :
■ The Intel Pentium FDIV bug

- The market expects accuracy
- See Colwell, The Pentium Chronicles

Concluding Remarks

■ ISAs support arithmetic

- Signed and unsigned integers
- Floating-point approximation to reals

■ Bounded range and precision

- Operations can overflow and underflow

■ MIPS ISA
■ Core instructions: 54 most frequently used
■ 100% of SPECINT, 97% of SPECFP

- Other instructions: less frequent

Next Lecture

■ Performance evaluation
■ Micro-architecture introduction
■ Chapter 4.1-4.4

