
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS352H: Computer Systems Architecture

Lecture 7: Performance Measurement & MIPS
Single-Cycle Implementation

September 22, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Which has higher performance?
What is performance?

Time to completion (latency)? – Concorde 2.2x
Throughput? – 747 1.6x

We’re concerned with performance, but there are other, sometime
more important, metrics:

Cost
Power
Footprint
Weight, ,,,

Performance Is…

Our focus

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

Latency of What?

DC-Paris trip:
Drive to airport
Park
Take shuttle
Check in
Security
Wait at gate
Board
Wait on plane
Wait on runway
Fly
Land
…

Run application
Request resources
Get scheduled
Run
Request resources
…

Total CPU time

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Performance Is…

Performance is measured in terms of things-per-second
Bigger is better

CPU Latency = Execution Time (ET)

Performance(x) =

X is n times faster than y means:

1
ExecutionTime(x)

Performance(x)
Performance(y)

n =
ExecutionTime(y)
ExecutionTime(x)

=

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Review: Machine Clock Rate

Clock rate (MHz, GHz) is inverse of clock cycle time

one clock period

 10 nsec clock cycle => 100 MHz clock rate

 5 nsec clock cycle => 200 MHz clock rate

 2 nsec clock cycle => 500 MHz clock rate

 1 nsec clock cycle => 1 GHz clock rate

500 psec clock cycle => 2 GHz clock rate

250 psec clock cycle => 4 GHz clock rate

200 psec clock cycle => 5 GHz clock rate

CC = 1 / CR

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

CPU Performance Factors

ET(x) = #CC(x) * CC

ET(x) =

#CC(x) = #Instructions(x) * CPI (Cycles per instruction)

#CC(x)
CR

We can improve ET by:
Reducing CC (increasing CR) (Technology)
Reducing #CC:

Fewer instructions (Compiler)
Fewer cycles per instruction (Architecture)

ET = #I * CPI * CC

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Which is Faster?

Two implementations of the same instruction:

ET(A) = 1 x 2.0 x 10-9 = 2x10-9 sec
ET(B) = 1 x 1.2 x 1.25x10-9 = 1.5x10-9 sec

1.21.25 nsecB

2.01 nsecA

CPICCMachine

Performance(A)
Performance(B)

ET(B)
ET(A)= = 1.5x10-9

2.0x10-9 = 0.75

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Groups of Instructions

Group instructions by CPI
Consider two assembly language implementations of the
same HLL code segment

105

623C

212B

221A

Product#ICPIGroup

96

313C

212B

441A

Product#ICPIGroup

Fewer instructions may not mean higher performance

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Average CPI

To analyze program-level performance we compute the
effective CPI:

4.501.00Sum

0.450.153Branch

0.150.053Test

2.100.356Load/Store

1.800.454Arithmetic

ProductRel. Freq.CPIGroup

Note that to be meaningful, the sum of the relative frequencies must be 1.0

 Effective CPI = Σ (CPIi x ICi)
i = 1

n

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Example 1

Program parameters:
#I: 7.5 *109

Clock rate: 600MHz
CPI data:

Slowest CPU to execute in 35sec?

#I * CPI
Rate

0.1640.04Other
4.191.00Sum

0.2730.09Branch
1.7640.44Arithmetic
0.6040.15Store
1.4050.28Load

ProductCPIRel. Freq.Group

ET(Pgm) = = = 52.375 sec 7.5 * 109 * 4.19
600 * 106

35 = 7.5 * 109 * 4.19
x

X = 898MHz

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Example 1 (cont’)

Optimizer reduces instruction counts as follows:
Effect on performance?

NoneOther

5%Branch

20%Arithmetic

4%Store

12%Load

ReductionGroup

ProductReduce
d to:

Other
Sum

Branch
Arithmetic
Store
Load

New Rel.
Freq.

Old
Rel.

Freq.
Group

0.28
0.15

0.44
0.09
0.04
1.00

0.88

0.96
0.80
0.95
1.00

0.2464

0.1440
0.3520
0.0855
0.0400
0.8679

0.2839

0.1659
0.4056
0.0985
0.0461
1.0000

#I = 0.8679 * 7.5*109 = 6.50925*109

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Example 1 (cont’)

0.184440.0461Other
4.18491.00Sum

0.295530.0985Branch
1.622440.4056Arithmetic
0.663640.1659Store
1.419050.2839Load

ProductCPINew Rel.
Freq.

Group

So, how much faster is the optimized code?

#I * CPI
Rate

ET(Pgm) = = = 45.401 sec 6.50925 * 109 * 4.1849
600 * 106

Perf(optimized)
Perf(unoptimized)

ET(unoptimized)
ET(optimized)= = 52.375

45.401 = 1.15

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Speeding Up Execution Time

Execution Time is a function of three things:
of instructions
Average CPI
Clock rate

We can improve it by:
Choosing the “best” instruction sequence (compiler)
Reducing CPI (architecture)
Increasing clock rate (technology)

But changing one can adversely affect the others!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Speeding Up Execution Time

Compiler technology is quite good at generating sequences
with the fewest instructions

Recall that this may not mean the fewest clock cycles

Adoption of RISC architectures has led to significant
reductions in average CPI

By using simple instructions that lend themselves to fast
implementation
At a cost of more instructions

Clock rates have risen between 2 and 3 orders of
magnitude:

MIPS R2000 ca. 1985: 8MHz
MIPS R16000 ca. 2002: 1GHz

Rate of change is slowing down!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Example 2

How much faster would the machine be if a better data cache reduced the
average load time to 2 cycles?

How does this compare with using branch prediction to shave a cycle off the
branch time?

What if two ALU instructions could be executed at once?

Σ =
220%Branch
310%Store
520%Load
150%ALU

Freq x CPIiCPIiFreqOp
.5

1.0
.3
.4

2.2

CPU time new = 1.6 x #I x CC so 2.2/1.6 means 37.5% faster

1.6

.5
 .4
.3
.4

.5
1.0

.3

.2
2.0

CPU time new = 2.0 x #I x CC so 2.2/2.0 means 10% faster

.25
1.0

.3

.4
1.95

CPU time new = 1.95 x #I x CC so 2.2/1.95 means 12.8% faster

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Which Programs Should We Analyze?

Kernels: Livermore loops, LINPACK
Small programs that are easy to implement across architectures
Capture heart of a class of computations

Synthetic programs: Whetstone, Dhrystone
Don’t perform any meaningful computation
But represent a model of what goes on in real computations

Benchmark programs: SPEC, TPC
A collection of programs that represent what users do

Actual applications
Meaningful to you
May not port to all systems
May require large data sets

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Sidebar: A (Real) Anecdote

Without optimizer: 5.2 seconds
With optimizer: 0.1 seconds!!!
Optimizer determined that sum
was never used and therefore
didn’t generate any code to
compute it!

void main()
{

int i;
double x, sum;

sum = 0.0;
for (i=0; i<10000; i++) {

x = (double)i;
sum += sqrt(x);

}
}

Printing sum resulted in optimized version running twice as fast as the
unoptimized code

Moral: Understand what is going on

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

SPEC

An industry consortium
System Performance Evaluation Cooperative

Series of benchmarks consisting of real programs:
Computation-intensive
Graphics
Web servers
Java client/server
SIP
Virtualization
…

Evolve over time:
CPU92 CPU95 CPU2000 CPU2006

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

SPEC CPU2006

SPEC CPU2006
CINT2006: 12 integer-only programs (C and C++)
CFP2006: 17 floating point programs (FORTRAN, C and C++)

Detailed benchmark specification for reproducibility:
Detailed hardware characteristics

of CPUS and their clock rates
Memory size, …

Detailed software characteristics:
Operating system version
Compiler used
Flag setting during compilation, …

Results are relative to a baseline: Sun Ultra Enterprise 2
Ratio of measured wall clock time to baseline
A larger number is better

Rating is a geometric mean of the individual results
Great, but suffers from the “No child left behind” syndrome

Relevance
Manipulation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

SPEC CPU2006 Components

perlbench Several Perl apps
bzip2 Data compression
gcc C compiler
mcf Combinatorial optimization
gobmk Go program
hmmer Protein sequence analysis
sjeng Chess program
libquantum Simulates a quantum computer
h264ref Video compression
omnetpp Campus-wide ethernet simulation
astar Path finding algorithms
xalancbmk XML processor

bwaves Fluid dynamics
gamess Quantum chemistry
milc Quantum chromodynamics
zeusmp Computational fluid dynamics
gromacs Molecular dynamics
cactusADM General relativity
leslie3D Computational fluid dynamics
namd Molecular dynamics
dealII Finite element analysis
soplex Simplex algorithm
povray Image ray tracing
calculix Structural mechanics
GemsFDTD Computational electromagnetics
tonto Quantum chemistry
lbm Fluid dynamics
wrf Weather modeling
sphinx3 Speech recognition

CFP2006

CINT2006

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

TPC: Transaction Processing Benchmarks

Define an application scenario
Involves end-users
Remote access over a network
Databases

Considers throughput, latency, and price
Originally developed for ATM-like transactions
Now focused on order-entry application developed at
MCC in mid-80’s
Attempt at reality and completeness

But at the price of tremendous complexity

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

Performance Speed Up

SpeedUp =
ET Before Change
ET After Change

Speedup depends on:
Goodness of enhancement (s)
Fraction of time it’s used (p)

ET Before Change * [(1 – p) +

ET After Change =
p
s]

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Amdahl’s Law

Gene Amdahl: IBM S/360 Chief Architect

Speedup =

Speedup bounded by:

Duh!

Fraction of time not enhanced
1

!

1

(1" p) +
p

s

$ %
&

' (

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Example 3

Can double performance of floating point instructions
Cut latency by a factor of 2

Floating point operations represent 10% of workload

ETAfter = ETBefore * [0.9 + 0.1
2] = 0.95 * ETBefore

SpeedUp = 1
0.95 = 1.053

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

Example 4

Application takes 100sec to run
Multiplication represents 80% of the work
How much faster would multiplication have to be in otder
to get performance to improve by a factor of 4?

How about a factor of 6?

25 = 100 * [0.2 +]0.8
x

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

Amdahl’s Law

Make the common case fast!
Performance improvement depends on:

Goodness of the enhancement
And

Frequency of use

Examples
All instructions require instruction fetch, only a fraction require
data

Optimize instruction access first
Programs exhibit data locality; small memories are faster

Storage hierarchy: most frequent access to small, fast, local memory

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

 Design-time metrics:
Can it be implemented, in how long, at what cost?
Can it be programmed? Ease of compilation?

 Static Metrics:
How many bytes does the program occupy in memory?

 Dynamic Metrics:
How many instructions are executed? How many bytes does the processor fetch
to execute the program?
How many clocks are required per instruction?
How fast can the clock be made?

Best Metric: Time to execute the program!

Summary: Evaluating ISAs

CPI

Inst. Count Cycle Time
depends on the instructions set, the processor
organization, and compilation techniques.

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 28

Beauty is in the Eye of the Beholder

The right metric depends on the application:
Desktop
Game console
Microwave oven microcontroller
Web server

The right metric depends on the perspective:
CPU designer
System architect
Customer

Opportunity for manipulation galore!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 29

Our implementation of the MIPS is simplified
memory-reference instructions: lw, sw
arithmetic-logical instructions: add, sub, and, or, slt
control flow instructions: beq, j

Generic implementation
use the program counter (PC) to supply
the instruction address and fetch the
instruction from memory (and update the PC)
decode the instruction (and read registers)
execute the instruction

Later - more realistic pipelined version
All instructions (except j) use the ALU after reading the
registers

The Processor: Datapath & Control

Fetch
PC = PC+4

DecodeExec

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 30

Instruction Execution

PC → instruction memory, fetch instruction
Register numbers → register file, read registers
Depending on instruction class

Use ALU to calculate
Arithmetic result
Memory address for load/store
Branch target address

Access data memory for load/store
PC ← target address or PC + 4

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

CPU Overview

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

Multiplexers

Can’t just join wires together
Use multiplexers

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

Control

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 34

Logic Design Basics

Information encoded in binary
Low voltage = 0, High voltage = 1
One wire per bit
Multi-bit data encoded on multi-wire buses

Combinational element
Operate on data
Output is a function of input

State (sequential) elements
Store information

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 35

Combinational Elements

AND-gate
Y = A & B

A
B Y

I0
I1 Y

M
u
x

S

Multiplexer
Y = S ? I1 : I0

A

B
Y+

A

B

YALU

F

Adder
Y = A + B

Arithmetic/Logic Unit
Y = F(A, B)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 36

Sequential Elements

Register: stores data in a circuit
Uses a clock signal to determine when to update the stored value
Edge-triggered: update when Clk changes from 0 to 1

D

Clk

Q
Clk

D

Q

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 37

Sequential Elements

Register with write control
Only updates on clock edge when write control input is 1
Used when stored value is required later

D

Clk

Q
Write

Write

D

Q

Clk

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 38

Clocking Methodologies

The clocking methodology defines when signals can be read and
when they are written

An edge-triggered methodology
Longest delay determines clock period

Typical execution
read contents of state elements
send values through combinational logic
write results to one or more state elements

State
element

1

State
element

2

Combinational
logic

clock

one clock cycle
Assumes state elements are written on every clock cycle; if not, need explicit
write control signal

write occurs only when both the write control is asserted and the clock edge occurs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 39

Building a Datapath

Datapath
Elements that process data and addresses
in the CPU

Registers, ALUs, mux’s, memories, …

We will build a MIPS datapath incrementally
Refining the overview design

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 40

Abstract Implementation View

Two types of functional units:
elements that operate on data
values (combinational)
elements that contain state
(sequential)

Single cycle operation
Split memory model - one memory for instructions and one for data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 41

Instruction Fetch

32-bit
register

Increment by
4 for next
instruction

Fetching instructions involves
reading the instruction from the Instruction Memory
updating the PC to hold the address of the next instruction

PC is updated every cycle, so it does not need an explicit write control signal
Instruction Memory is read every cycle, so it doesn’t need an explicit read control signal

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 42

Decoding Instructions

Decoding instructions involves
sending the fetched instruction’s opcode and function field bits
to the control unit

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

Control
Unit

reading two values from the Register File
Register File addresses are contained in the instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 43

R Format Instructions

R format operations (add, sub, slt, and, or)

perform the (op and funct) operation on values in rs and rt
store the result back into the Register File (into location rd)

R-type:
31 25 20 15 5 0

op rs rt rd shamt funct

10

The Register File is not written every cycle (e.g. sw), so we need an explicit
write control signal for the Register File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write
Addr

Register
File

Read
 Data 1

Read
 Data 2

ALU

overflow
zero

ALU operationRegWrite

4

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 44

Load and Store Instructions
Load and store operations involve:

Read register operands
Compute memory address by adding the base register to the 16-bit signed-
extended offset field in the instruction
Store value (read from the Register File) written to the Data Memory
Load value, read from the Data Memory, written to the Register File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write
Addr

Register
File

Read
 Data 1

Read
 Data 2

ALU

overflow
zero

ALU operationRegWrite

Data
Memory

Address

Write Data

Read Data

Sign
Extend

MemWrite

MemRead
16 32

4

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 45

Composing the Elements

First-cut data path does an instruction in one clock cycle
Each datapath element can only do one function at a time
Hence, we need separate instruction and data memories

Use multiplexers where alternate data sources are used for
different instructions

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 46

R-Type/Load/Store Datapath

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 47

Branch Instructions

Read register operands
Compare operands

Use ALU, subtract and check Zero output

Calculate target address
Sign-extend displacement
Shift left 2 places (word displacement)
Add to PC + 4

Already calculated by instruction fetch

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 48

Branch Instructions
Branch operations involve:

compare the operands read from the Register File during decode for equality
(zero ALU output)
compute the branch target address by adding the updated PC to

the 16-bit signed-extended offset field in the instr

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register File

Read
 Data 1

Read
 Data 2

ALU

zero

ALU operation
Sign

Extend16 32

Shift
left 2

Add

4 Add

PC

Branch
target
address

(to branch
control logic)

4

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 49

Jump Instruction

Jump operation involves
replace the lower 28 bits of the PC with the lower 26 bits of the
fetched instruction shifted left by 2 bits

Read
Address

Instruction

Instruction
Memory

Add

PC

4

Shift
left 2

Jump
address

26

4

28

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 50

Creating a Single Datapath from the Parts

Assemble the datapath segments and add control lines and
multiplexors as needed
Single cycle design – fetch, decode and execute each
instructions in one clock cycle

no datapath resource can be used more than once per instruction, so
some must be duplicated (e.g., separate Instruction Memory and
Data Memory, several adders)
multiplexors needed at the input of shared elements with control
lines to do the selection
write signals to control writing to the Register File and Data
Memory

Cycle time is determined by length of the longest path

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 51

Fetch, R, and Memory Access Portions

Read
Address

Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 52

Multiplexor Insertion

MemtoReg

Read
Address

Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

ALUSrc

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 53

Clock Distribution

MemtoReg

Read
Address

Instruction

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf
zero

ALU control

RegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

ALUSrc

System Clock

clock cycle

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 54

Adding the Branch Portion

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read
 Data 1

Read
 Data 2

ALU

ovf
zero

ALU controlRegWrite

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend16 32

MemtoRegALUSrc

Read
Address

Instruction

Instruction
Memory

Add

PC

4 Shift
left 2

Add

PCSrc

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 55

Full Datapath

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 56

ALU Control

ALU used for
Load/Store: F = add
Branch: F = subtract
R-type: F depends on funct field

NOR1100

set-on-less-than0111

subtract0110

add0010

OR0001

AND0000

FunctionALU control

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 57

ALU Control

Assume 2-bit ALUOp derived from opcode
Combinational logic derives ALU control

0111set-on-less-than101010set-on-less-than

0001OR100101OR

0000AND100100AND

0110subtract100010subtract

0010add100000add10R-type

0110subtractXXXXXXbranch equal01beq

0010addXXXXXXstore word00sw

0010addXXXXXXload word00lw

ALU controlALU functionfunctOperationALUOpopcode

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 58

The Main Control Unit

Control signals derived from instruction

0 rs rt rd shamt funct
31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address
31:26 25:21 20:16 15:0

4 rs rt address
31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 59

Main Control Unit

011000X0Xbeq
000100

000100X1Xsw
101011

000011110lw
100011

100001001R-type
000000

ALUOpBranchMemWrMemRdRegWrMemRegALUSrcRegDstInstr

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 60

Design the Main Control logic from the truth table

Control Unit Logic

Instr[31]
Instr[30]
Instr[29]
Instr[28]
Instr[27]
Instr[26]

R-type lw sw beq
RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOp0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 61

Datapath With Control

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 62

R-Type Instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 63

Load Instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 64

Branch-on-Equal Instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 65

Implementing Jumps

Jump uses word address
Update PC with concatenation of

Top 4 bits of old PC
26-bit jump address
00

Need an extra control signal decoded from opcode

2 address
31:26 25:0

Jump

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 66

Datapath With Jumps Added

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 67

Main Control Unit

1XXX000XXXj
000010

0011000X0Xbeq
000100

0000100X1Xsw
101011

0000011110lw
100011

0100001001R-type
000000

JumpALUOpBranchMemWrMemRdRegWrMemRegALUSrcRegDstInstr

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 68

Performance Issues

Longest delay determines clock period
Critical path: load instruction
Instruction memory → register file → ALU → data memory →
register file

Not feasible to vary period for different instructions
Violates design principle

Making the common case fast

We will improve performance by pipelining

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 69

Instruction Critical Paths

jump

beq

store

load
R-type

TotalReg WrD MemALU OpReg RdI MemInstr.

81214
1214214

 Calculate cycle time assuming negligible delays (for muxes,
control unit, sign extend, PC access, shift left 2, wires) except:
 Instruction and Data Memory (4 ns)
 ALU and adders (2 ns)
 Register File access (reads or writes) (1 ns)

114214

7214

44

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 70

Single Cycle Disadvantages & Advantages

Uses the clock cycle inefficiently – the clock cycle must be
timed to accommodate the slowest instruction

especially problematic for more complex instructions like floating
point multiply

May be wasteful of area since some functional units (e.g.,
adders) must be duplicated since they can not be shared
during a clock cycle but
Is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 71

Next Lecture

MIPS pipelined implementation
Rest of chapter 4

