
CS352H Fall 2009                Fussell 

Course Project – Designing a Pipelined Processor

In this project, you will design and implement a pipelined processor using Verilog. The ISA for
this processor is a variant of the LC-3 from CS310. We’ll call this machine the LC-3.5; its ISA is
given below. It is basically an LC-3 with the indirect load and store instructions omitted, and
with some useful arithmetic instructions added.

You will be working on this project for the remainder of the semester, although there will also be
some homework and reading assignments to do in parallel with it. You will work in pairs, so
each of you will need to select a partner to work with on the project. Accordingly, your first
project task is to select a partner. You should email me (fussell@cs.utexas.edu) your selection
no later than Thursday October 15, 2009. Each member of the team should send an email so I
can verify that you both understand you will be working together. If anyone fails to select a
partner, I will appoint one shortly after that date.

The first phase of the project will allow you to get familiar with the LC-3.5. This is due by
11:59pm on Thursday October 29, 2009 and will be counted as homework 6, worth 100 points.

HW 6 - Bug Hunt
 
Download and examine the unpipelined LC3.5 implementation from the class Verilog page (see
below). There are eight bugs hidden in the Verilog code. Your job is to understand the code and
find the bugs. You will need to learn all of the ins and outs of the LC3.5 implementation and
testbench (.v files). Here are your tasks:

1. Turn in the following electronically. You should be able to complete this even with the
buggy Verilog code.
• A diagram of the LC3.5 datapath with control, to a level of detail similar to that in

Figure 4.17 on page 322 in P&H. Please indicate the width of various wire busses in
the design. Note that there are a variety of flip-flops in the datapath - please include
these in your diagram. For your convenience, a picture of the original LC-3 datapath
from Patt and Patel is included below

• A paragraph or two describing how the control logic works (how the instructions are
sequenced in general).

• A step-by-step description of how the JSRR instruction proceeds through the
datapath. Be very detailed here indicating how all of the control signals are set for
each cycle required to execute the instruction. 

2. Find the bugs! Use your debugging skills to create a suite of assembly programs that help
you find the bugs. The most credit will be given to the teams that find all eight bugs. You
are to turn in the following:
• A description of each bug and how it affects the execution of the program.
• The location of the bug in the Verilog code (filename and line number).
• A suggested correction.

CS352H Fall 2009                Fussell 

• A short LC3.5 assembly program that demonstrates the bug. Note that if you find six
bugs, you should turn in six different LC3.5 programs, one for each bug. Make sure
to comment your bug programs, to include a description of how the bug is exposed.

Turn in an electronic copy:

csh> turnin --submit dongli hw6 <bug_i.asm>

Note that we have an assembler and simulator for the LC3.5 machine. The second page
of this handout shows an example of how to run the assembler and LC3.5 simulator, as
well as instructions on how to unpack, compile, and run the Verilog for the buggy LC3.5.

Note: For reasons explained below, you will need to give us advance notice if you plan to use
slip days on this project. If you do not notify us in advance, we will assume you will not need
them and we will not allow them.

Environment Setup

Following are some instructions to get you started on running LC3.5 programs on the instruction
level simulator as well as on the Verilog implementation of the LC3.5. You can download
lc35buggy.tar.gz from
(http://www.cs.utexas.edu/~fussell/courses/cs352h/assignments/lc35/lc35buggy.tar.gz)

Once downloaded, extract the files as shown below. You should have five directories.

csh> cp <tarfile> .
csh> tar –xzvf lc35buggy.tar.gz
csh> ls
asm/ lc35/ os/ pli/

Note that some files assume the directory structure as above. Do not rename or move these five
directories.

To setup an environment for this assignment, you should source the Verilog environment as
described on the Verilog page (note, this has changed since Homework 5).

If you are using bash:

bash> source /p/bin/lc35/class_sh.src

If you are using csh,

csh> source /p/bin/lc35/class_csh.src

Now you have to compile the LC3.5 'operating system'.

lc35buggy> cd os
lc35buggy/os> make

CS352H Fall 2009                Fussell 

If all the environments are set correctly, this should succeed without errors and will generate .obj
files. This is the end of environment setup.

Sample Program Execution

The following is a set of commands you can execute to assemble and run a simple program
(fibonacci). Note that the fibonacci program may not actually work on the buggy Verilog (but it
will work on the LC3.5 instruction simulator). You should spend a little time making sure you
understand how each of the commands works.

assemble test programs

csh> cd asm
csh> lc35_asm fib.asm

Run new lc35 simulator, --nox gives you a non-X-windows mode.

csh> simxlc3 --nox
(lc3) help
(lc3) load fib.obj
(lc3) go
(lc3) quit
csh> cd ../lc35
csh> make_lc35 lc35.f
csh> lc35_vsim +vhex+../asm/fib.vhex +maxc5000

Note that +maxc5000 sets the maximum number of clock cycles executed to 5000. The default is
10000 - this flag is just a way to ensure that the Verilog simulation doesn’t accidentally get into
an infinite loop. Check out the details in lc35_top.s

Pipelined Design in Verilog

Once you have completed the homework 6 bug hunt, you may proceed to the major portion of
the project. This will be due on the last class day, Thursday December 3, 2009 by 11:59pm.

For your convenience you will be provided a correct unpipelined Verilog implementation to start
with once everyone has turned in the first part of the project (hw 6). The unpipelined version is a
multi-cycle implementation in which each instruction proceeds through the same five steps of
execution.

You should keep in mind the following hints as you build your pipelined processor:

• Before you start “hacking” at the code, sit down and design the pipelined processor with
your partner. Draw datapath diagrams, control state machines, etc.

• Determine what hazards arise in your pipeline and how to avoid them. You are required
to use bypass paths wherever possible to limit the negative effect of pipeline bubbles.

CS352H Fall 2009                Fussell 

• Start with a simple predict not-taken branching scheme. If you have time, you can
develop a more sophisticated branch predictor for extra credit.

• You should use the test programs you generated for the bug hunt and augment your suite
with more. We have the technology to automatically test your code on programs you
haven’t seen before...and we will!

• Do not change the external interface to the LC 3.5 as seen by the stimulus (test) file - we
will be relying on that interface to be stable so we can run our tests.

To help you along this path, you must to turn in the following:

• A project plan. The ideal plan should include an overview of the design, a listing of the
major tasks and your estimate of the hours required per task. The extent and thoroughness
of the plan is up to you. You will receive full credit for turning in any sensible attempt at
a plan. Your plans should be e-mailed to fussell@cs.utexas.edu no later than Tuesday,
Nov. 3rd at 11:59pm. PDF files are preferred. You are more than welcome to discuss your
plans with me before or after turning them in. I can schedule additional office hours, if
needed.

• On subsequent Tuesdays (11/10, 11/17, and 11/24) you are to turn in (also by e-mail to
my account, no later than 11:59pm) a brief report (half a page is fine) indicating your
progress to plan, any changes you wish to make to the plan and a statement of how many
hours you put into the project the previous week.

• These four reports will account for 20% of your project grade. No late days on these.

You are to turn in the following:

• All of your verilog files (.v)
• Any .h files you use.
• A top level stim file (similar to or the same as the lc35_test.v provided with the

unpipelined version).
• An lc35.f file, listing all of the files required to build and run your verilog simulator.
• Two test programs (prog1.asm and prog2.asm) along with two .out files

(prog1.out, prog2.out) which show the results of your pipelined processor running
your test programs.

• A short report (1-2 pages) describing your design. This can include diagrams,
descriptions, etc. - whatever you need to describe how your design works. You should
also do a performance comparison of your pipelined design relative to the original
unpipelined design. For example, on your test programs determine how many cycles it
takes to run the test on both versions.

You should submit your files using the following:

csh> turnin --submit dongli project <filename>

If you find that you have of extra time and wish to pursue extra credit (and you have thoroughly
tested and debugged your pipelined code), then see me. I have a variety of interesting
enhancements that you might be interested in tackling, including:

• More sophisticated branch prediction
• Multi-issue/superscalar
• Caching

CS352H Fall 2009                Fussell 

The LC 3.5 ISA

The LC-3.5 is based on the LC3, which is defined in the second edition of the Patt&Patel text.
The LC-3.5 eliminates several instructions (such as the LDI and STI) and replaced them more
useful arithmetic instructions, such as SUB, OR, ASH (arithmetic shift), and LSH (logical shift).
The table below shows the encodings for all of the LC-3.5’s instructions; the salient features are
described below:

• LSH and ASH use can accept both positive and negative values to determine how far to
shift. Bit 15 of the second operand determine its sign and the low order 4 bits determine
the shift magnitude. Bits 5-14 are ignored. A negative shift is a shift right.

• For shifting left, LSH and ASH are identical. For shifting right, ASH replicates the sign
bit.

• JSR uses an 11-bit signed offset to compute the target PC (newPC = oldPC + offset)
• The starred instructions modify the condition code registers (NZP). Recall that only one

of the N/Z/P bits is set at any one time.
 

CS352H Fall 2009                Fussell 

LC-3 Datapath

