Verilog for Control Logic

Paul Gratz

4/2/03
CART, UT-CS

Outline

* Control Logic Modeling Methods
— Non Procedural
e Continuous assignments
— Procedural
« Always blocks
e Conditional statements
e Multi-way Branch (Case)- statements
* Loops
— State Machine example
* Synthesis to Structural Verilog

4/2/03
CART, UT-CS

Non-Procedural Control logic

assign head plus = in array addr + 1;
assign tail plus = out array addr + 1;
assign tail plus2 = out array addr + 2;
assign saqg wr clk = ~clk & sag we;

e Simple
« Explicit

Difficult to express complicated expressions

State must be saved for sequential logic

4/2/03
CART, UT-CS

Procedural Control Logic

 (ften easier to code.

e Can handle state without having to specify
sequential cells.

 Is non-implementation specific.

» Potentially dangerous from the point of view of
creating real hardware. Must pay attention to
buildablity of the design.

4/2/03
CART, UT-CS

Always blocks revisited

input signall, signalZ?2, signal3;
output outputl, output2; sigrial
reg outputl, output?; signal2

always @ (signall or signal2?2 or signal3) begin o

end

outputl
output?

signall | ~signal2;
signal?2 & ~signal3; signald ey |

Whenever any “signal X changes the two outputs are
recalculated.

Easily done 1n an assignment statement as well.

Must make sure all signals tested are listed in “@ ()”
condition.

This 1s non-sequential as shown

4/2/03

CART, UT-CS

Conditional Statments

always @ (signall or signalZ or signal3) begin
if (signall | ~signal2)
outputl = 1'bl;
else
outputl = 1'b0;
if (signal2 & ~signal3)
output2 = 1'bl;
else
output2 = 1'b0;
end

« Equivalent to the last slide but uses 1f statements.

« Must be sure to always include “else” for each
conditional or will cause instantiation of latches
(unless you want latches...).

4/2/03
CART, UT-CS

Multi-way Branching

always @ (signall or signal2) begin
case ({signall,signal2}) // Case for “or” part of logic block
2'b00:
outputl = 1'bl;
2'b01:
outputl = 1'b0;
2'b10:
outputl = 1'bl;
2'bl1:
outputl = 1'bl;
default:

outputl = 1'b0;
endcase // case({signall,signal2})
end

« Always (always, always!) use a default statement unless
you mean to instantiate a latch (usually you do not).

« (Case statements are great for specifying state machines.

4/2/03
CART, UT-CS

Loops

* Don’t use them outside of testbenches!
e The are not synthesizable (mostly).
« Have little relation to hardware (usually).

* Generally a bad 1dea unless you are sure you know
what you are doing.

4/2/03
CART, UT-CS

State Machine Example: Saturating Counter

in0=0

count=00

in0=1
zero=1

saturated=0

count=11 count=01

zero=0
saturated=1

zero=0
saturated=0

count=10

zero=0

in0=0 saturated=0

in0=0

4/2/03
CART, UT-CS

State Machine Example: Continued

module always test (/*AUTOARG*/ 2'b10: begin
// Outputs zero = 1'b0;
count, zero, saturated, saturated = 1'b0;
// Inputs if (in0)
in0, clk, reset next count = 2'bll;
) else
next count = 2'b01;
input 1in0, clk, reset; end
output [1:0] count; default: begin // also could have used "2'bll:" here
output zero, saturated; zero = 1'b0;
reg [1:0] count, next count; saturated = 1'bl;
reg zero, saturated; if (in0)
next count = 2'bll;
always @ (/*AUTOSENSE*/count or in0) begin else
case (count) next count = 2'bl0;
2'p00: begin end
zero = 1'bl; endcase // case (count)
saturated = 1'b0; end
if (in0)
next count = 2'b01; always @ (posedge clk) begin
else if (reset)
next count = 2'b00; count = 2'b00;
end else
2'b01: begin count = next count;
zero = 1'b0; end
saturated = 1'b0; endmodule // always test
if (in0)
next count = 2'bl0;
else
next count = 2'b00;
end
4/2/03 10

CART, UT-CS

Synthesis

« Automated process.

« Used to make behavioral style verilog into
structural instantiations of library cells.

* Give the tool design constraints and 1t will try to
produce logic that fits them.

« Have to be careful to make sure the logic you
intend 1s what you get.

* The only purpose of behavioral verilog 1s to be
synthesized into real logic.

4/2/03 11
CART, UT-CS

