CS 352H: Computer Systems Architecture

Topic 10: Instruction Level Parallelism (ILP)

October 6 - &, 2009

o EEmmImEEZ

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Instruction-level Parallelism (IL.P)

B Pipelining: executing multiple instructions in
parallel

® To increase ILP
® Deeper pipeline
m Less work per stage = shorter clock cycle
® Multiple 1ssue
m Replicate pipeline stages = multiple pipelines
® Start multiple instructions per clock cycle
m CPI <1, so use Instructions Per Cycle (IPC)
mE.g., 4GHz 4-way multiple-issue
m 16 BIPS, peak CPI =0.25, peak [IPC =4
® But dependencies reduce this in practice

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Multiple Issue

B Static multiple 1ssue
®m Compiler groups instructions to be issued together
m Packages them into “issue slots”

®m Compiler detects and avoids hazards

® Dynamic multiple 1ssue

m CPU examines instruction stream and chooses instructions to issue
each cycle

®m Compiler can help by reordering instructions

m CPU resolves hazards using advanced techniques at runtime

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Speculation

B “Guess” what to do with an instruction
m Start operation as soon as possible

B Check whether guess was right
m [f so, complete the operation
® [f not, roll-back and do the right thing

® Common to static and dynamic multiple 1ssue
B Examples

® Speculate on branch outcome
m Roll back if path taken is different

® Speculate on load
m Roll back if location is updated

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Compiler/Hardware Speculation

B Compiler can reorder instructions
® ¢.g., move load before branch

® Can include “fix-up” instructions to recover from incorrect guess

B Hardware can look ahead for instructions to execute

m Buffer results until it determines they are actually needed
® Flush buffers on incorrect speculation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Speculation and Exceptions

® What if exception occurs on a speculatively executed
instruction?
m c.g., speculative load before null-pointer check

B Static speculation
® Can add ISA support for deferring exceptions

® Dynamic speculation

® Can buffer exceptions until instruction completion (which may not
occur)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Static Multiple Issue

® Compiler groups instructions into “issue packets”
® Group of instructions that can be issued on a single cycle

® Determined by pipeline resources required

® Think of an issue packet as a very long instruction

® Specifies multiple concurrent operations
® = Very Long Instruction Word (VLIW)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Scheduling Static Multiple Issue

B Compiler must remove some/all hazards
® Reorder instructions into issue packets
® No dependencies with a packet

® Possibly some dependencies between packets
® Varies between ISAs; compiler must know!

® Pad with nop if necessary

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

MIPS with Static Dual Issue

m Two-issue packets
® One ALU/branch instruction
® One load/store instruction
®m 64-bit aligned
m ALU/branch, then load/store

® Pad an unused instruction with nop

Addres | Instruction Pipeline Stages

A APE/branch |F 1D EX | ME | WB

n+4 | Load/store IF ID | EX | \VE | WB

n+38 ALU/branch |F 1D BX | ME | WB

n+ 12 | Load/store IF ID | EX | \VE | WB

n+ 16 | ALU/branch |F 1D BX | ME | WB
n+ 20 |Load/store IF ID | EX | \VE | WB

M
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

80000180 -

University of Texas at Austin CS352H - Computer Systems Architecture

Instruction
memory

YY VY

Registers

N
> M
u X
o X
N~ ALU—>
N
> M
u >
X
_/
ALUL—

Write
data

Data
memory

Address

Yy VY

Y VYY

Cx=2)

Fall 2009 Don Fussell

10

Hazards in the Dual-Issue MIPS

® More nstructions executing in parallel
®m EX data hazard

B Forwarding avoided stalls with single-issue

® Now can’t use ALU result in load/store in same packet

m add $t0, $s0, $s1
load $s2, 0($t0)

® Split into two packets, effectively a stall
B [oad-use hazard

m Still one cycle use latency, but now two instructions

® More aggressive scheduling required

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

11

Scheduling Example

B Schedule this for dual-issue MIPS

Loop: Iw $t0, 0($s1) # $t0=array element
addu $t0, $10, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch | oad/store cycle
Loop lw $t0, 0($s1) 1

; addi $s1, $s1,—4

addu $t0, $t0, $s2
bne $s1, $zero, Loop |sw $t0, 4($s1)

IPC = 5/4 =1.25 (c.f. peak IPC = 2)

W

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Loop Unrolling

®m Replicate loop body to expose more parallelism

®m Reduces loop-control overhead

m Use different registers per replication
m Called “register renaming”

® Avoid loop-carried “anti-dependencies”
m Store followed by a load of the same register
®m Aka “name dependence”

® Reuse of a register name

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Loop Unrolling Example
ALU/branch | oad/store cycle
Loop |addi $s1, $s1,—16 lw $t0, 0($s1) 1
: lw $t1, 12($s1) 2
addu $t0, $t0, $s2 lw $t2, 8($s1) 3
addu $t1, $t1, $s2 lw 513, 4($s1) 4
addu $t2, $t2, $s2 sw $t0, 16($s1) 5
addu $t3, $t4, $s2 sw $t1, 12($s1) 6
sw $t2, 8($s1) 4
bne $s1, $zero, Loop |[sw $t3, 4($s1) 8

m [PC=14/8=1.75

® Closer to 2, but at cost of registers and code size

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

14

Dynamic Multiple Issue

B “Superscalar” processors
B CPU decides whether to 1ssue 0, 1, 2, ... each cycle

® Avoiding structural and data hazards

® Avoids the need for compiler scheduling
® Though it may still help
® Code semantics ensured by the CPU

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Dynamic Pipeline Scheduling

m Allow the CPU to execute instructions out of order to
avoid stalls

® But commit result to registers in order

B Example

w $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

® Can start sub while addu is waiting for Iw

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

16

Dynamically Scheduled CPU

Instruction fetch
and decode unit

/ Preserves

In-order issue dependencies

Y \ \ / \ /

Reservation | | Reservation Reservation [[Reservation Hold pending
station station 4 station station operands

N

Out-of-order execute

Functional Floating Load-
units Integer Integer ce

point store
J Results also sent

to any waiting
reservation
stations

> Commit In-order commit
Reorders buffer for unit
register writes

Can supply
operands for
issued instructions

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Register Renaming

®m Reservation stations and reorder buffer effectively provide
register renaming

® On 1nstruction 1ssue to reservation station

m [f operand is available in register file or reorder buffer
m Copied to reservation station
® No longer required in the register; can be overwritten
m [f operand is not yet available
m [t will be provided to the reservation station by a function unit
m Register update may not be required

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

18

Speculation

®m Predict branch and continue issuing

® Don’t commit until branch outcome determined

B [oad speculation

® Avoid load and cache miss delay
m Predict the effective address
® Predict loaded value
®m Load before completing outstanding stores
® Bypass stored values to load unit

® Don’t commit load until speculation cleared

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Why Do Dynamic Scheduling?

® Why not just let the compiler schedule code?
®m Not all stalls are predicable
® c.g., cache misses

®m Can’t always schedule around branches

® Branch outcome 1s dynamically determined

® Different implementations of an ISA have different
latencies and hazards

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

20

Does Multiple Issue Work?

B Yes, but not as much as we’d like
® Programs have real dependencies that limit ILP
B Some dependencies are hard to eliminate

® c.g., pointer aliasing
B Some parallelism 1s hard to expose

® Limited window size during instruction issue
B Memory delays and limited bandwidth

®m Hard to keep pipelines full

B Speculation can help 1f done well

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

21

Power Etticiency

® Complexity of dynamic scheduling and speculations
requires power

B Multiple simpler cores may be better

Microproce | Year Clock | Pipelin | Issue | Out-of- | Cores | Power
sSsor Rate e width order!/

i486 1989 | 25MHz | Stdfyes 1 Spdwilati 1 5W
Pentium 1993 | 66MHz 5 2 ND 1 10W
Pentium 1997 | 200MHz 10 3 Yes 1 29W
Bro 2001 | 2000MH 22 3 Yes 1 75W
Palleragtigtt | 2004 | 3608MH | 31 3 Yes 1 103W
Core 2006 | 293BMH 14 4 Yes 2 75W
UltraSparc 2003 | 1956MH 14 4 No 1 90W
WitraSparc | 2005 | 1208MH 6 1 No 8 70W

T1 y4

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

The Opteron X4 Microarchitecture

Instruction cache

'

Instruction prefetch

Branch and decode 72 phySica|
prediction * registers

RISC-operation queue

!

Dispatch and register remaining

Y [
[[[[

Integer and floating-point operation queue

Y

Register file

Floating
Integer Integer point
ALU ALU Adder
/SSE

Integer

Floating
point
Misc

ALU.
Multiplier

Load/Store queue

Data
cache

Commit
unit

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

The Opteron X4 Pipeline Flow

®m For integer operations

RISC-operation Reorder
i queue Reorder buffer I I
Instruction Deac;]c:jde bufffar ch'edulmhg . Data Cache/
Fetch > > »| allocation + || —» > + |spatc »| Execution > Commit
translate register unit
renaming

Numberof = — ' 3 5 '2— ' z : -
clock cycles

FP is 5 stages longer

Up to 106 RISC-ops in progress
Bottlenecks

Complex instructions with long dependencies

Branch mispredictions

Memory access delays

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Concluding Remarks

® Multiple 1ssue and dynamic scheduling (ILP)
® Dependencies limit achievable parallelism

m Complexity leads to the power wall

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

