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Instruction-Level Parallelism (ILP)

Pipelining: executing multiple instructions in
parallel
To increase ILP

Deeper pipeline
Less work per stage ⇒ shorter clock cycle

Multiple issue
Replicate pipeline stages ⇒ multiple pipelines
Start multiple instructions per clock cycle
CPI < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue

16 BIPS, peak CPI = 0.25, peak IPC = 4
But dependencies reduce this in practice
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Multiple Issue

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue
CPU examines instruction stream and chooses instructions to issue
each cycle
Compiler can help by reordering instructions
CPU resolves hazards using advanced techniques at runtime
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Speculation

“Guess” what to do with an instruction
Start operation as soon as possible
Check whether guess was right

If so, complete the operation
If not, roll-back and do the right thing

Common to static and dynamic multiple issue
Examples

Speculate on branch outcome
Roll back if path taken is different

Speculate on load
Roll back if location is updated
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Compiler/Hardware Speculation

Compiler can reorder instructions
e.g., move load before branch
Can include “fix-up” instructions to recover from incorrect guess

Hardware can look ahead for instructions to execute
Buffer results until it determines they are actually needed
Flush buffers on incorrect speculation
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Speculation and Exceptions

What if exception occurs on a speculatively executed
instruction?

e.g., speculative load before null-pointer check
Static speculation

Can add ISA support for deferring exceptions
Dynamic speculation

Can buffer exceptions until instruction completion (which may not
occur)
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Static Multiple Issue

Compiler groups instructions into “issue packets”
Group of instructions that can be issued on a single cycle
Determined by pipeline resources required

Think of an issue packet as a very long instruction
Specifies multiple concurrent operations
⇒ Very Long Instruction Word (VLIW)
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Scheduling Static Multiple Issue

Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies with a packet
Possibly some dependencies between packets

Varies between ISAs; compiler must know!
Pad with nop if necessary
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MIPS with Static Dual Issue

Two-issue packets
One ALU/branch instruction
One load/store instruction
64-bit aligned

ALU/branch, then load/store
Pad an unused instruction with nop
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MIPS with Static Dual Issue
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Hazards in the Dual-Issue MIPS

More instructions executing in parallel
EX data hazard

Forwarding avoided stalls with single-issue
Now can’t use ALU result in load/store in same packet

add  $t0, $s0, $s1
load $s2, 0($t0)
Split into two packets, effectively a stall

Load-use hazard
Still one cycle use latency, but now two instructions

More aggressive scheduling required
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Scheduling Example

Schedule this for dual-issue MIPS

Loop: lw   $t0, 0($s1)      # $t0=array element
      addu $t0, $t0, $s2    # add scalar in $s2
      sw   $t0, 0($s1)      # store result
      addi $s1, $s1,–4      # decrement pointer
      bne  $s1, $zero, Loop # branch $s1!=0

4sw   $t0, 4($s1)bne  $s1, $zero, Loop
3nopaddu $t0, $t0, $s2
2nopaddi $s1, $s1,–4
1lw   $t0, 0($s1)nopLoop

:

cycleLoad/storeALU/branch

IPC = 5/4 = 1.25 (c.f. peak IPC = 2)
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Loop Unrolling

Replicate loop body to expose more parallelism
Reduces loop-control overhead

Use different registers per replication
Called “register renaming”
Avoid loop-carried “anti-dependencies”

Store followed by a load of the same register
Aka “name dependence”

Reuse of a register name
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Loop Unrolling Example

IPC = 14/8 = 1.75
Closer to 2, but at cost of registers and code size

3lw   $t2, 8($s1)addu $t0, $t0, $s2
4lw   $t3, 4($s1)addu $t1, $t1, $s2
5sw   $t0, 16($s1)addu $t2, $t2, $s2
6sw   $t1, 12($s1)addu $t3, $t4, $s2

8sw   $t3, 4($s1)bne  $s1, $zero, Loop
7sw   $t2, 8($s1)nop

2lw   $t1, 12($s1)nop
1lw   $t0, 0($s1)addi $s1, $s1,–16Loop

:

cycleLoad/storeALU/branch
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Dynamic Multiple Issue

“Superscalar” processors
CPU decides whether to issue 0, 1, 2, … each cycle

Avoiding structural and data hazards

Avoids the need for compiler scheduling
Though it may still help
Code semantics ensured by the CPU
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Dynamic Pipeline Scheduling

Allow the CPU to execute instructions out of order to
avoid stalls

But commit result to registers in order

Example
lw    $t0, 20($s2)
addu  $t1, $t0, $t2
sub   $s4, $s4, $t3
slti  $t5, $s4, 20
Can start sub while addu is waiting for lw
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Dynamically Scheduled CPU

Results also sent
to any waiting

reservation
stations

Reorders buffer for
register writes Can supply

operands for
issued instructions

Preserves
dependencies

Hold pending
operands
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Register Renaming

Reservation stations and reorder buffer effectively provide
register renaming
On instruction issue to reservation station

If operand is available in register file or reorder buffer
Copied to reservation station
No longer required in the register; can be overwritten

If operand is not yet available
It will be provided to the reservation station by a function unit
Register update may not be required
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Speculation

Predict branch and continue issuing
Don’t commit until branch outcome determined

Load speculation
Avoid load and cache miss delay

Predict the effective address
Predict loaded value
Load before completing outstanding stores
Bypass stored values to load unit

Don’t commit load until speculation cleared
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Why Do Dynamic Scheduling?

Why not just let the compiler schedule code?
Not all stalls are predicable

e.g., cache misses

Can’t always schedule around branches
Branch outcome is dynamically determined

Different implementations of an ISA have different
latencies and hazards
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Does Multiple Issue Work?

Yes, but not as much as we’d like
Programs have real dependencies that limit ILP
Some dependencies are hard to eliminate

e.g., pointer aliasing

Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well
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Power Efficiency

Complexity of dynamic scheduling and speculations
requires power
Multiple simpler cores may be better
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The Opteron X4 Microarchitecture

72 physical
registers
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The Opteron X4 Pipeline Flow

For integer operations

FP is 5 stages longer
Up to 106 RISC-ops in progress

Bottlenecks
Complex instructions with long dependencies
Branch mispredictions
Memory access delays
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Concluding Remarks

Multiple issue and dynamic scheduling (ILP)
Dependencies limit achievable parallelism
Complexity leads to the power wall


