CS352H: Computer Systems Architecture

Topic 12: Memory Hierarchy -
Virtual Memory and Virtual Machines

October 27, 2009
o EEmmImEEZ

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Memory Technology

m Static RAM (SRAM)
m (0.5ns — 2.5ns, $2000 — $5000 per GB

® Dynamic RAM (DRAM)
® 50ns — 70ns, $20 — $75 per GB

® Magnetic disk
® Sms — 20ms, $0.20 — $2 per GB

® [deal memory
® Access time of SRAM
m Capacity and cost/GB of disk

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Principle of Locality

® Programs access a small proportion of their address space
at any time

® Temporal locality
® [tems accessed recently are likely to be accessed again soon

® c.g., instructions in a loop, induction variables

m Spatial locality
® [tems near those accessed recently are likely to be accessed soon

m E.g., sequential instruction access, array data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Taking Advantage of Locality

® Memory hierarchy
m Store everything on disk

®m Copy recently accessed (and nearby) items from disk to
smaller DRAM memory

® Main memory

® Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory

® Cache memory attached to CPU

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Memory Hierarchy Levels

® Block (aka line): unit of copying
® May be multiple words

®m [faccessed data is present in upper level

Processor m Hit: access satisfied by upper level
\ B Hit ratio: hits/accesses

m [faccessed data is absent

|| m Miss: block copied from lower level

B Time taken: miss penalty

B Miss ratio: misses/accesses
= 1 — hit ratio

Data is transferred ,
{ ®m Then accessed data supplied from upper level

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Virtual Memory

® Use main memory as a “cache” for secondary (disk)
storage
® Managed jointly by CPU hardware and the operating system (OS)

B Programs share main memory

m Each gets a private virtual address space holding its frequently
used code and data

® Protected from other programs

B CPU and OS translate virtual addresses to physical
addresses

® VM “block™ is called a page
® VM translation “miss” is called a page fault

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Address Translation

®m Fixed-size pages (e.g., 4K)

Virtual address

Vlrtual addresses PhyS|Ca| addresses 31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0
o~ Address translation
| Virtual page number Page offset
.\
*— |
o :
(Translation)
.\
Q—ﬁ
4
Disk addresses 292827 ----veeee B oo 15141312111098 ----p------ 3210
Physical page number Page offset

Physical address

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Page Fault Penalty

® On page fault, the page must be fetched from disk

®m Takes millions of clock cycles
® Handled by OS code

® Try to minimize page fault rate
m Fully associative placement
® Smart replacement algorithms

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Page Tables

B Stores placement information
® Array of page table entries, indexed by virtual page number
m Page table register in CPU points to page table in physical memory

m If page 1s present in memory
®m PTE stores the physical page number
® Plus other status bits (referenced, dirty, ...)

m If page 1s not present
®m PTE can refer to location in swap space on disk

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Translation Using a Page Table

Page table register

Virtual address

81 30 29 28 27 cceeeeeeeeatecnnncannns 1514 13 12 11 10 9 8 ++-evv-- 3210

Virtual page number Page offset

420 412
Valid Physical page number
° [
Page table
418
If 0 then page is not
present in memory
2.0 0 NN/ IR - - -« - B oL el ...15 14 13 12 11 10 9 8- 3210
Physical page number Page offset

Physical address

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

10

Mapping Pages to Storage

Virtual page
number
| Page table
Physical page or Physical memory
Valid disk address
1 —_
1 .//)\
1 .\
1
0 L A
~1 / i
1 *— /A "
0 L />/)
1 ¢« </ Disk storage
1 CaV4 D
0 o/ [~ @) e
1 S \\KI |
IS
| |
ISA
I |
~—_

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Replacement and Writes

® To reduce page fault rate, prefer least-recently used (LRU)
replacement
m Reference bit (aka use bit) in PTE set to 1 on access to page
® Periodically cleared to 0 by OS
m A page with reference bit = 0 has not been used recently
®m Disk writes take millions of cycles
® Block at once, not individual locations
®m Write through is impractical
m Use write-back
® Dirty bit in PTE set when page is written

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell = 12

Fast Translation Using a TLB

®m Address translation would appear to require extra memory references
® One to access the PTE
® Then the actual memory access
®m But access to page tables has good locality
®m So use a fast cache of PTEs within the CPU
m Called a Translation Look-aside Buffer (TLB)

m Typical: 16-512 PTEs, 0.5—1 cycle for hit, 10—100 cycles for miss,
0.01%—1% miss rate

® Misses could be handled by hardware or software

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

13

Fast Translation Using a TLB

Physical memory

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address

| |
1[0]1 .
111 .
1[1]1 .
1[(0]1 o
0/0][0
1]0]1 o~

Page table

Physical page
Valid Dirty Ref or disk address

NERKIE ://

110(0 -

17070 — /M
K — .
0[0[0 C—— R

1]0]1 -/// | l
1101 - .

0T0[0 7 | |
1111 < 7 il |
111 v 7 Sy
o[ofo —

1111 4

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

14

TIL.B Misses

m [f page 1s iIn memory
® [oad the PTE from memory and retry
® Could be handled in hardware

m Can get complex for more complicated page table structures

® Or in software
m Raise a special exception, with optimized handler

m If page 1s not in memory (page fault)
® OS handles fetching the page and updating the page table
® Then restart the faulting instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

TL.B Miss Handler

B TLB miss indicates
® Page present, but PTE not in TLB

m Page not preset

B Must recognize TLB miss before destination register
overwritten

® Raise exception

® Handler copies PTE from memory to TLB
B Then restarts instruction

m [f page not present, page fault will occur

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Page Fault Handler

®m Use faulting virtual address to find PTE
®m [ocate page on disk

B Choose page to replace
m [f dirty, write to disk first

®m Read page into memory and update page table
B Make process runnable again

m Restart from faulting instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

TL.B and Cache Interaction

Virtual address

............................. 14 13 12 11 10 9+--------32 1 0

| Virtual page number Page offset ‘ L If CaChe tag uses thSI(:al
+° i address
Valid Dirty Tag Physical page number
e | o= ® Need to translate before
TLB hit «—e 8«— cache lookup
= ® Alternative: use virtual
420
_— . address tag
Physical page number | Page offset | Complications due tO aliasing
; Physical addr..w_ Block Byte
Physical address tag | Cache index ‘ o offset - Dl fferent Virtual a d dresses
18 18 14]2]
) for shared physical address
ds
J12 Data
Valid Tag
Cache
f:)
Cache hit
J32
Data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

Memory Protection

B Different tasks can share parts of their virtual address
spaces
® But need to protect against errant access

m Requires OS assistance

® Hardware support for OS protection
® Privileged supervisor mode (aka kernel mode)
® Privileged instructions

m Page tables and other state information only accessible in
supervisor mode

m System call exception (e.g., syscall in MIPS)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

19

Virtual Machines

® Host computer emulates guest operating system and machine resources
® Improved isolation of multiple guests
® Avoids security and reliability problems
® Aids sharing of resources
® Virtualization has some performance impact
®m Feasible with modern high-performance computers
® Examples
m [IBM VM/370 (1970s technology!)
® VMWare
® Microsoft Virtual PC

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

Virtual Machine Monitor

B Maps virtual resources to physical resources
B Memory, I/O devices, CPUs

B Guest code runs on native machine in user mode

® Traps to VMM on privileged instructions and access to protected
resources

® Guest OS may be different from host OS
® VMM handles real I/O devices

® Emulates generic virtual I/O devices for guest

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

21

Example: Timer Virtualization

B In native machine, on timer interrupt

® OS suspends current process, handles interrupt, selects and
resumes next process

®m With Virtual Machine Monitor

B VMM suspends current VM, handles interrupt, selects and resumes
next VM

m [f a VM requires timer interrupts
B VMM emulates a virtual timer

® Emulates interrupt for VM when physical timer interrupt occurs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell =~ 22

Instruction Set Support

® User and System modes
B Privileged instructions only available 1n system mode
® Trap to system if executed in user mode

m All physical resources only accessible using privileged
instructions
® Including page tables, interrupt controls, I/O registers

B Renaissance of virtualization support
® Current ISAs (e.g., x86) adapting

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Pitfalls

®m Extending address range using segments
m E.g., Intel 80286
® But a segment is not always big enough

®m Makes address arithmetic complicated
® Implementing a VMM on an ISA not designed for
virtualization

m E.g., non-privileged instructions accessing hardware resources

® Either extend ISA, or require guest OS not to use problematic
instructions

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

24

Concluding Remarks

®m Fast memories are small, large memories are slow

m We really want fast, large memories ®

m Caching gives this illusion ©
B Principle of locality

® Programs use a small part of their memory space frequently
B Memory hierarchy

® L1 cache <= L2 cache <= ... <= DRAM memory
<> disk

B Memory system design is critical for multiprocessors

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

25

