
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS352H: Computer Systems Architecture

Topic 13: I/O Systems
November 3, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Introduction

I/O devices can be characterized by
Behavior: input, output, storage
Partner: human or machine
Data rate: bytes/sec, transfers/sec

I/O bus connections

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

I/O System Characteristics

Dependability is important
Particularly for storage devices

Performance measures
Latency (response time)
Throughput (bandwidth)
Desktops & embedded systems

Mainly interested in response time & diversity of devices
Servers

Mainly interested in throughput & expandability of devices

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Dependability

Fault: failure of a component
May or may not lead to
system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Dependability Measures

Reliability: mean time to failure (MTTF)
Service interruption: mean time to repair (MTTR)
Mean time between failures

MTBF = MTTF + MTTR
Availability = MTTF / (MTTF + MTTR)
Improving Availability

Increase MTTF: fault avoidance, fault tolerance, fault forecasting
Reduce MTTR: improved tools and processes for diagnosis and repair

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Disk Storage

Nonvolatile, rotating magnetic storage

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Disk Sectors and Access

Each sector records
Sector ID
Data (512 bytes, 4096 bytes proposed)
Error correcting code (ECC)

Used to hide defects and recording errors
Synchronization fields and gaps

Access to a sector involves
Queuing delay if other accesses are pending
Seek: move the heads
Rotational latency
Data transfer
Controller overhead

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Disk Access Example

Given
512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer
rate, 0.2ms controller overhead, idle disk

Average read time
4ms seek time
+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

If actual average seek time is 1ms
Average read time = 3.2ms

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Disk Performance Issues

Manufacturers quote average seek time
Based on all possible seeks
Locality and OS scheduling lead to smaller actual average seek times

Smart disk controller allocate physical sectors on disk
Present logical sector interface to host
SCSI, ATA, SATA

Disk drives include caches
Prefetch sectors in anticipation of access
Avoid seek and rotational delay

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Disk Specs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Flash Storage

Nonvolatile semiconductor storage
100× – 1000× faster than disk
Smaller, lower power, more robust
But more $/GB (between disk and DRAM)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Flash Types

NOR flash: bit cell like a NOR gate
Random read/write access
Used for instruction memory in embedded systems

NAND flash: bit cell like a NAND gate
Denser (bits/area), but block-at-a-time access
Cheaper per GB
Used for USB keys, media storage, …

Flash bits wears out after 1000’s of accesses
Not suitable for direct RAM or disk replacement
Wear leveling: remap data to less used blocks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Flash Types

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Flash Specs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Interconnecting Components

Need interconnections between
CPU, memory, I/O controllers

Bus: shared communication channel
Parallel set of wires for data and synchronization of data transfer
Can become a bottleneck

Performance limited by physical factors
Wire length, number of connections

More recent alternative: high-speed serial connections with
switches

Like networks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Bus Types

Processor-Memory buses
Short, high speed
Design is matched to memory organization

I/O buses
Longer, allowing multiple connections
Specified by standards for interoperability
Connect to processor-memory bus through a bridge

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Bus Signals and Synchronization

Data lines
Carry address and data
Multiplexed or separate

Control lines
Indicate data type, synchronize transactions

Synchronous
Uses a bus clock

Asynchronous
Uses request/acknowledge control lines for handshaking

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

I/O Bus Examples

ExternalInternalInternalExternalExternalIntended use

INCITS TC
T10

SATA-IOPCI-SIGUSB
Implementers
Forum

IEEE 1394Standard

8m1m0.5m5m4.5mMax length

YesYesDependsYesYesHot pluggable

300MB/s300MB/s250MB/s/lane
1×, 2×, 4×, 8×,
16×, 32×

0.2MB/s,
1.5MB/s, or
60MB/s

50MB/s or
100MB/s

Peak
bandwidth

442/lane24Data width

41112763Devices per
channel

Serial
Attached
SCSI

Serial ATAPCI ExpressUSB 2.0Firewire

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Typical x86 PC I/O System

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

I/O Management

I/O is mediated by the OS
Multiple programs share I/O resources

Need protection and scheduling
I/O causes asynchronous interrupts

Same mechanism as exceptions
I/O programming is fiddly

OS provides abstractions to programs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

I/O Commands

I/O devices are managed by I/O controller hardware
Transfers data to/from device
Synchronizes operations with software

Command registers
Cause device to do something

Status registers
Indicate what the device is doing and occurrence of errors

Data registers
Write: transfer data to a device
Read: transfer data from a device

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

I/O Register Mapping

Memory mapped I/O
Registers are addressed in same space as memory
Address decoder distinguishes between them
OS uses address translation mechanism to make them only
accessible to kernel

I/O instructions
Separate instructions to access I/O registers
Can only be executed in kernel mode
Example: x86

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Polling

Periodically check I/O status register
If device ready, do operation
If error, take action

Common in small or low-performance real-time embedded
systems

Predictable timing
Low hardware cost

In other systems, wastes CPU time

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Interrupts

When a device is ready or error occurs
Controller interrupts CPU

Interrupt is like an exception
But not synchronized to instruction execution
Can invoke handler between instructions
Cause information often identifies the interrupting device

Priority interrupts
Devices needing more urgent attention get higher priority
Can interrupt handler for a lower priority interrupt

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

I/O Data Transfer

Polling and interrupt-driven I/O
CPU transfers data between memory and I/O data registers
Time consuming for high-speed devices

Direct memory access (DMA)
OS provides starting address in memory
I/O controller transfers to/from memory autonomously
Controller interrupts on completion or error

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

DMA/Cache Interaction

If DMA writes to a memory block that is cached
Cached copy becomes stale

If write-back cache has dirty block, and DMA reads memory block
Reads stale data

Need to ensure cache coherence
Flush blocks from cache if they will be used for DMA
Or use non-cacheable memory locations for I/O

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

DMA/VM Interaction

OS uses virtual addresses for memory
DMA blocks may not be contiguous in physical memory

Should DMA use virtual addresses?
Would require controller to do translation

If DMA uses physical addresses
May need to break transfers into page-sized chunks
Or chain multiple transfers
Or allocate contiguous physical pages for DMA

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 28

Measuring I/O Performance

I/O performance depends on
Hardware: CPU, memory, controllers, buses
Software: operating system, database management system,
application
Workload: request rates and patterns

I/O system design can trade-off between response time and
throughput

Measurements of throughput often done with constrained
response-time

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 29

Transaction Processing Benchmarks

Transactions
Small data accesses to a DBMS
Interested in I/O rate, not data rate

Measure throughput
Subject to response time limits and failure handling
ACID (Atomicity, Consistency, Isolation, Durability)
Overall cost per transaction

Transaction Processing Council (TPC) benchmarks (www.tcp.org)
TPC-APP: B2B application server and web services
TCP-C: on-line order entry environment
TCP-E: on-line transaction processing for brokerage firm
TPC-H: decision support — business oriented ad-hoc queries

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 30

File System & Web Benchmarks

SPEC System File System (SFS)
Synthetic workload for NFS server, based on monitoring real
systems
Results

Throughput (operations/sec)
Response time (average ms/operation)

SPEC Web Server benchmark
Measures simultaneous user sessions, subject to required
throughput/session
Three workloads: Banking, Ecommerce, and Support

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

I/O vs. CPU Performance

Amdahl’s Law
Don’t neglect I/O performance as parallelism increases compute
performance

Example
Benchmark takes 90s CPU time, 10s I/O time
Double the number of CPUs/2 years

I/O unchanged

47%21s10s11s+6
31%33s10s23s+4
18%55s10s45s+2
10%100s10s90snow

% I/O timeElapsed timeI/O timeCPU timeYear

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

RAID

Redundant Array of Inexpensive (Independent) Disks
Use multiple smaller disks (c.f. one large disk)
Parallelism improves performance
Plus extra disk(s) for redundant data storage

Provides fault tolerant storage system
Especially if failed disks can be “hot swapped”

RAID 0
No redundancy (“AID”?)

Just stripe data over multiple disks
But it does improve performance

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

RAID 1 & 2

RAID 1: Mirroring
N + N disks, replicate data

Write data to both data disk and mirror disk
On disk failure, read from mirror

RAID 2: Error correcting code (ECC)
N + E disks (e.g., 10 + 4)
Split data at bit level across N disks
Generate E-bit ECC
Too complex, not used in practice

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 34

RAID 3: Bit-Interleaved Parity

N + 1 disks
Data striped across N disks at byte level
Redundant disk stores parity
Read access

Read all disks
Write access

Generate new parity and update all disks
On failure

Use parity to reconstruct missing data

Not widely used

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 35

RAID 4: Block-Interleaved Parity

N + 1 disks
Data striped across N disks at block level
Redundant disk stores parity for a group of blocks
Read access

Read only the disk holding the required block
Write access

Just read disk containing modified block, and parity disk
Calculate new parity, update data disk and parity disk

On failure
Use parity to reconstruct missing data

Not widely used

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 36

RAID 3 vs RAID 4

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 37

RAID 5: Distributed Parity

N + 1 disks
Like RAID 4, but parity blocks distributed across disks

Avoids parity disk being a bottleneck
Widely used

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 38

RAID 6: P + Q Redundancy

N + 2 disks
Like RAID 5, but two lots of parity
Greater fault tolerance through more redundancy

Multiple RAID
More advanced systems give similar fault tolerance with better
performance

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 39

RAID Summary

RAID can improve performance and availability
High availability requires hot swapping

Assumes independent disk failures
Too bad if the building burns down!

See “Hard Disk Performance, Quality and Reliability”
http://www.pcguide.com/ref/hdd/perf/index.htm

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 40

I/O System Design

Satisfying latency requirements
For time-critical operations
If system is unloaded

Add up latency of components

Maximizing throughput
Find “weakest link” (lowest-bandwidth component)
Configure to operate at its maximum bandwidth
Balance remaining components in the system

If system is loaded, simple analysis is insufficient
Need to use queuing models or simulation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 41

Server Computers

Applications are increasingly run on servers
Web search, office apps, virtual worlds, …

Requires large data center servers
Multiple processors, networks connections, massive storage
Space and power constraints

Server equipment built for 19” racks
Multiples of 1.75” (1U) high

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 42

Rack-Mounted Servers

Sun Fire x4150 1U server

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 43

Sun Fire x4150 1U server

4 cores
each

16 x 4GB =
64GB DRAM

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 44

I/O System Design Example

Given a Sun Fire x4150 system with
Workload: 64KB disk reads

Each I/O op requires 200,000 user-code instructions and 100,000 OS
instructions

Each CPU: 109 instructions/sec
FSB: 10.6 GB/sec peak
DRAM DDR2 667MHz: 5.336 GB/sec
PCI-E 8× bus: 8 × 250MB/sec = 2GB/sec
Disks: 15,000 rpm, 2.9ms avg. seek time, 112MB/sec transfer rate

What I/O rate can be sustained?
For random reads, and for sequential reads

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 45

Design Example (cont)

I/O rate for CPUs
Per core: 109/(100,000 + 200,000) = 3,333
8 cores: 26,667 ops/sec

Random reads, I/O rate for disks
Assume actual seek time is average/4
Time/op = seek + latency + transfer
= 2.9ms/4 + 4ms/2 + 64KB/(112MB/s) = 3.3ms
303 ops/sec per disk, 2424 ops/sec for 8 disks

Sequential reads
112MB/s / 64KB = 1750 ops/sec per disk
14,000 ops/sec for 8 disks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 46

Design Example (cont)

PCI-E I/O rate
2GB/sec / 64KB = 31,250 ops/sec

DRAM I/O rate
5.336 GB/sec / 64KB = 83,375 ops/sec

FSB I/O rate
Assume we can sustain half the peak rate
5.3 GB/sec / 64KB = 81,540 ops/sec per FSB
163,080 ops/sec for 2 FSBs

Weakest link: disks
2424 ops/sec random, 14,000 ops/sec sequential
Other components have ample headroom to accommodate these rates

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 47

Fallacy: Disk Dependability

If a disk manufacturer quotes MTTF as 1,200,000 hr
(140yr)

A disk will work that long

Wrong: this is the mean time to failure
What is the distribution of failures?
What if you have 1000 disks

How many will fail per year?

!

Annual Failure Rate(AFR) =
8760 hrs/disk

1200000 hrs/failure
= 0.0073 failures/disk "100%= 0.73%

 So 0.73% x 1000 disks = 7.3 failures expected in a year

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 48

Fallacies

Disk failure rates are as specified
Studies of failure rates in the field

Schroeder and Gibson: 2% to 4% vs. 0.6% to 0.8%
Pinheiro, et al.: 1.7% (first year) to 8.6% (third year) vs. 1.5%

Why?
A 1GB/s interconnect transfers 1GB in one sec

But what’s a GB?
For bandwidth, use 1GB = 109 B
For storage, use 1GB = 230 B = 1.075×109 B
So 1GB/sec is 0.93GB in one second

About 7% error

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 49

Pitfall: Offloading to I/O Processors

Overhead of managing I/O processor request may
dominate

Quicker to do small operation on the CPU
But I/O architecture may prevent that

I/O processor may be slower
Since it’s supposed to be simpler

Making it faster makes it into a major system component
Might need its own coprocessors!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 50

Pitfall: Backing Up to Tape

Magnetic tape used to have advantages
Removable, high capacity

Advantages eroded by disk technology developments
Makes better sense to replicate data

E.g, RAID, remote mirroring

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 51

Fallacy: Disk Scheduling

Best to let the OS schedule disk accesses
But modern drives deal with logical block addresses

Map to physical track, cylinder, sector locations
Also, blocks are cached by the drive

OS is unaware of physical locations
Reordering can reduce performance
Depending on placement and caching

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 52

Pitfall: Peak Performance

Peak I/O rates are nearly impossible to achieve
Usually, some other system component limits performance
E.g., transfers to memory over a bus

Collision with DRAM refresh
Arbitration contention with other bus masters

E.g., PCI bus: peak bandwidth ~133 MB/sec
In practice, max 80MB/sec sustainable

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 53

Concluding Remarks

I/O performance measures
Throughput, response time
Dependability and cost also important

Buses used to connect CPU, memory,
I/O controllers

Polling, interrupts, DMA
I/O benchmarks

TPC, SPECSFS, SPECWeb
RAID

Improves performance and dependability

