CS 352H: Computer Systems Architecture

Topic 14: Multicores, Multiprocessors, and
Clusters

o EEmmImEEZ

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Introduction

® Goal: connecting multiple computers
to get higher performance
®m Multiprocessors
m Scalability, availability, power efficiency

®m Job-level (process-level) parallelism
® High throughput for independent jobs
m Parallel processing program
® Single program run on multiple processors

B Multicore microprocessors
® Chips with multiple processors (cores)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Hardware and Software

® Hardware
m Serial: e.g., Pentium 4
m Parallel: e.g., quad-core Xeon €5345

m Software
® Sequential: e.g., matrix multiplication
® Concurrent: e.g., operating system

B Sequential/concurrent software can run on serial/parallel
hardware

® Challenge: making effective use of parallel hardware

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

What We’ve Already Covered

m §2.11: Parallelism and Instructions
® Synchronization

m §3.6: Parallelism and Computer Arithmetic
B Associativity

m §4.10: Parallelism and Advanced Instruction-Level
Parallelism

m §5.8: Parallelism and Memory Hierarchies
® Cache Coherence

®m §6.9: Parallelism and 1/O:

® Redundant Arrays of Inexpensive Disks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Parallel Programming

m Parallel software 1s the problem

® Need to get significant performance improvement
m Otherwise, just use a faster uniprocessor, since it’s easier!
®m Difficulties
® Partitioning
® Coordination

m Communications overhead

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Amdahl’s Law

B Sequential part can limit speedup

B Example: 100 processors, 90x speedup?
mT =T /100 + T

parallelizable sequential

m Speedup = 1

- 90
(1-F /100

parallelizable) +

=0.999
® Need sequential part to be 0.1% of original time

arallelizable

Fp

® Solving: F

parallelizable

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Example

B Workload: sum of 10 scalars, and 10 x 10 matrix sum
®m Speed up from 10 to 100 processors

® Single processor: Time = (10 + 100) x t_44
®m 10 processors

®m Time =10 x t ,, + 100/10 X t ,, =20 X t

®m Speedup = 110/20 = 5.5 (55% of potential)

®m 100 processors
® Time =10 x t,, + 100/100 x t ,, = 11 X t
®m Speedup =110/11 =10 (10% of potential)

B Assumes load can be balanced across processors

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Example (cont)

® What if matrix size 1s 100 x 100?
® Single processor: Time = (10 + 10000) x t_ 4,

®m 10 processors
m Time = 10 x t_,, + 10000/10 x t,,,= 1010 x t_,
®m Speedup = 10010/1010 =9.9 (99% of potential)

®m 100 processors
® Time =10 x t_,, + 10000/100 x t ., = 110 x t_,,
®m Speedup = 10010/110 =91 (91% of potential)

® Assuming load balanced

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Strong vs Weak Scaling

B Strong scaling: problem size fixed

B As in example

B Weak scaling: problem size proportional to
number of processors

® 10 processors, 10 x 10 matrix

B Time =20 x t_
® 100 processors, 32 X 32 matrix

m Time = 10 % t,, + 1000/100 x t 4, =20 Xt
® Constant performance 1n this example

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Shared Memory

B SMP: shared memory multiprocessor

®m Hardware provides single physical
address space for all processors

® Synchronize shared variables using locks
B Memory access time
B UMA (uniform) vs. NUMA (nonuniform)

Processor Processor e Processor

Interconnection Network
A
Y

A
Y

Memory I/0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Example: Sum Reduction

® Sum 100,000 numbers on 100 processor UMA
® Each processor has ID: 0 < Pn <99
® Partition 1000 numbers per processor
® Initial summation on each processor
sum[Pn] = 0;
for (i = 1000*Pn;
i <1000*(Pn+1);i=i+1)
sum[Pn] = sum[Pn] + A[i];
B Now need to add these partial sums
® Reduction: divide and conquer
m Half the processors add pairs, then quarter, ...
® Need to synchronize between reduction steps

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Example: Sum Reduction

half = 100; —(')\
BRge (half = 1) [0][1
synch(); ™~
if (half%2 != 0 && Pn == 0) N
sum[0] = sum[0] + sum[half-1]; LS HROT T
/* Conditional sum needed when half is odd; \E&_
Processor0 gets missing element */ (half=4)|0|[1][2]/3][4]|5]|6]]|7

half = half/2; /* dividing line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until (half == 1);

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell = 12

Message Passing

®m Each processor has private physical address space
® Hardware sends/receives messages between processors

Processor Processor Processor
A A A
Y Y Y
Cache Cache Cache
A A A
Y Y Y
Memory Memory . Memory
A A A
Y Y Y
Interconnection Network

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Loosely Coupled Clusters

m Network of independent computers
®m Each has private memory and OS

® Connected using I/0 system
m E.g., Ethernet/switch, Internet

®m Suitable for applications with independent tasks
B Web servers, databases, simulations, ...

®m High availability, scalable, affordable

® Problems

B Administration cost (prefer virtual machines)
® Low interconnect bandwidth

m c.f. processor/memory bandwidth on an SMP

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Sum Reduction (Again)

® Sum 100,000 on 100 processors

® First distribute 100 numbers to each
® The do partial sums
sum = 0;
for (i=0;i<1000;i=i+1)
sum = sum + AN]Ji];
®m Reduction
m Half the processors send, other half receive and add

® The quarter send, quarter receive and add, ...

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Sum Reduction (Again)

B Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive
dividing line */
if (Pn >= half && Pn < limit)
send(Pn - half, sum);
if (Pn < (limit/2))
sum = sum + receive();
limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

® Send/receive also provide synchronization

m Assumes send/receive take similar time to addition

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Grid Computing

B Separate computers interconnected by long-haul networks
m E.g., Internet connections

® Work units farmed out, results sent back

® Can make use of 1dle time on PCs
m E.g., SETI@home, World Community Grid

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Multithreading

®m Performing multiple threads of execution in parallel
m Replicate registers, PC, etc.
m Fast switching between threads
® Fine-grain multithreading
m Switch threads after each cycle
B Interleave instruction execution
m [f one thread stalls, others are executed
®m Coarse-grain multithreading

® Only switch on long stall (e.g., L2-cache miss)

®m Simplifies hardware, but doesn’t hide short stalls (eg, data
hazards)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

Simultaneous Multithreading

B In multiple-issue dynamically scheduled processor

® Schedule instructions from multiple threads

® Instructions from independent threads execute when function units
are available

® Within threads, dependencies handled by scheduling and register
renaming

® Example: Intel Pentium-4 HT
®m Two threads: duplicated registers, shared function units and caches

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Multithreading Example

Issue slots —

Thread A Thread B Thread C Thread D
HEE ||
HE
Time
HE
B

Issue slots ——
Coarse MT Fine MT

%)
<
=

Time N HE L1 1]
|| HEN HEEN
NN HEN 1|]
[] | 1]
EEEE = O

L I
==- = |
1] 1]
o HER o
o =

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

Future of Multithreading

® Will 1t survive? In what form?
B Power considerations = simplified microarchitectures
®m Simpler forms of multithreading

® Tolerating cache-miss latency

® Thread switch may be most effective

B Multiple simple cores might share resources more
effectively

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

Instruction and Data Streams

B An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 instructions of x86
Multiple | MISD: MIMD:
No examples today Intel Xeon e5345

® SPMD: Single Program Multiple Data

®m A parallel program on a MIMD computer
® Conditional code for different processors

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

22

B Operate elementwise on vectors of data

m E.g., MMX and SSE instructions in x86
® Multiple data elements in 128-bit wide registers

®m All processors execute the same instruction at the same
time
®m Each with different data address, etc.
®m Simplifies synchronization
® Reduced instruction control hardware

B Works best for highly data-parallel applications

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

23

Vector Processors

®m Highly pipelined function units

B Stream data from/to vector registers to units
® Data collected from memory into registers

m Results stored from registers to memory

B Example: Vector extension to MIPS
m 32 x 64-element registers (64-bit elements)

B Vector instructions
m |v, sv: load/store vector
® addv.d: add vectors of double
m addvs.d: add scalar to each element of vector of double

®m Significantly reduces instruction-fetch bandwidth

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Example: DAXPY (Y =a X X +Y)

loop: I.d $f2, 0($sO

s Conventional MIPS code

l.d $f0,a($sp) ;load scalar a
addiu r4,$s0,#512 ;upper bound of what to load
;load x()

;store into y(i)
addiu $sO $s, : ;increment index to x
addiu $s1,$s1,#8 ;increment index to y
subu $t0,r4,$s0 ;compute bound

bne $t0,$zero,loop ;check if done

m Vector MIPS code

l.d $f0,a($sp) ;load scalar a

v $v1,0($s0) ;load vector x

mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
v $v3,0($s1) ;load vectory

addv.d $v4,$v2,$v3 ;add y to product

sv $v4,0($s1) ;store the result

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

25

Vector vs. Scalar

B Vector architectures and compilers
®m Simplify data-parallel programming
® Explicit statement of absence of loop-carried dependences
®m Reduced checking in hardware
®m Regular access patterns benefit from interleaved and burst memory
® Avoid control hazards by avoiding loops

B More general than ad-hoc media extensions (such as
MMX, SSE)

® Better match with compiler technology

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

History of GPUs

®m FEarly video cards

® Frame buffer memory with address generation for video output
®m 3D graphics processing

® Originally high-end computers (e.g., SGI)

B Moore’s Law = lower cost, higher density

®m 3D graphics cards for PCs and game consoles
® Graphics Processing Units

® Processors oriented to 3D graphics tasks

®m Vertex/pixel processing, shading, texture mapping,
rasterization

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

Graphics in the System

Intel
CPU

x16 PCI-Express Link

A
i Front Side Bus

North

display Bridge

DDR2
Memory

x4 PCI-Express Link #
derivative y

128-bit
667 MT/s

Mgzgry South
Bridge

CPU

A
i Front Side Bus

North . Memo
Bridge Y
1: PCI Bus
1&
r
South Framebuffer
Bridge Memory

VGA

LAN UART _|£| Display

display

4

AMD
CPU
CPU
core
internal bus A 128-bit
: el 667 MT/s
North | | ppbr2
Bridge — | | Memory

x16 PCI-Express Link y HyperTransport 1.03

GPU
Memory

University of Texas at Austin CS352H - Computer Systems Architecture

<> Chipset

Fall 2009 Don Fussell

28

GPU Architectures

® Processing 1s highly data-parallel
m GPUs are highly multithreaded

m Use thread switching to hide memory latency
® Less reliance on multi-level caches

® Graphics memory is wide and high-bandwidth
® Trend toward general purpose GPUs

®m Heterogeneous CPU/GPU systems

m CPU for sequential code, GPU for parallel code
B Programming languages/APIs

® DirectX, OpenGL

m C for Graphics (Cg), High Level Shader Language (HLSL)
® Compute Unified Device Architecture (CUDA)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

29

Example: NVIDIA Tesla

Bridge

H

System Memory

Host Interface I

GPU

SFU|[SFU
~
~
Shared
N Memory

| |
Viewport/Clip/ High-Definiti
Input Assembler Setu;é;alilster/ Vidlego Pro(;::grs /
I I
Vertex Work Pixel Work Compute Work ,I
Distribution Distribution Distribution y
| | | /
| | | | | | | Y.
TPC TPC TPC TPC TPC TPC TPC ¢ /]
[J| L]]]] / 7
[1| 1| [1| 1| 1| / 17
SM SM SM SM SM SM SM SM SM SM
I] [Jif ([—{ | |
| [Jif ([[Iif ([
— [— | — | — | — | —
S [1]] < e e e o
[SPIEF] [sPlfse] 535 5 5 5 5 5 53 S 53 S 53 S 53] S5
A A P S S A
[SeIfs] 5355 55 5 5 5 53 S 53 S 53 S35 S5
I OO OO EOEE B O EE e
Shared Shared Shared Shared | Shared I Shared Shared I Shared Shared I Shared
0f Memor Memor Memor Memor Mem: Memor Memor Memor Memor
Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Ugit \\
| Tex L1 | Tex L1 | | Tex L1 | | Tex L1 | | Tex L1 | | Tex L1 | Tex L1 Sl o
S
(Interconnection Network S\
I I I
[rop || 2 | [mop|| 12 | [Rop || 2 | [mop|| L2 | | Displayintertace |
I | | | I |
| | | | | . . I
DRAM DRAM DRAM DRAM . Display
Loemmmmmm == -

University of Texas at Austin CS352H - Computer Systems Architecture

Streaming
multiprocessor

/
/
I-Cache
MT Issue
/]
4 C-Cache

e

=]

8 x Streaming
processors

Fall 2009 Don Fussell

30

Example: NVIDIA Tesla

B Streaming Processors

m Single-precision FP and integer units
m Each SP is fine-grained multithreaded

® Warp: group of 32 threads

® Executed 1n parallel,

Processors ——

UltraSPARC T2 Tesla Multiprocessor

SIMD style B Threado T TTTTTT
=8 SP M Thread! [T T T T T T T T

S B Threac2 EEEEEEEN

x 4 clock cycles Hardware = Thread3 HEEEEEEE

Thread4
S ted

® Hardware contexts sl Threads ========
Warp1
for 24 warps Ty | NANEEEEEE 7

EEEEEEEE

m Registers, PCs, ...

Warp23

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

Classitying GPUs

® Don’t fit nicely into SIMD/MIMD model

® Conditional execution in a thread allows an illusion of MIMD
®m But with performance degradation
®m Need to write general purpose code with care

Static: Discovered Dynamic: Discovered at
at Compile Time Runtime
Instruction-Level VLIW Superscalar
Parallelism
Data-Level SIMD or Vector Tesla Multiprocessor
Parallelism

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

Interconnection Networks

® Network topologies
® Arrangements of processors, switches, and links

I T o — o

Bus Ring

SiCiCisi
S IO
o] Ta Tl (>l

U aUat

N-cube (N = 3)

2D Mesh Fully connected

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

33

Multistage Networks

SO0
A A A A A A A) _>: = @ |
Nhakakakakalakala P
pfrrrrrrrr : —
BN ESERSEERSEaRans - -
Nlakakalakalakaka —’: i
Npalalalatalalals —{Pel- g
S[Akakakalalalakala r’— R
Nrukakakakakalakala
L8
Naialakalalalakals
a. Crossbar b. Omega network
A
'
A T C
B 1 D

c. Omega network switch box

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 34

Network Characteristics

B Performance

® Latency per message (unloaded network)
® Throughput

® Link bandwidth

® Total network bandwidth

® Bisection bandwidth

® Congestion delays (depending on traffic)
m Cost
® Power
®m Routability in silicon

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 35

Parallel Benchmarks

®m Linpack: matrix linear algebra

m SPECrate: parallel run of SPEC CPU programs
m Job-level parallelism

m SPLASH: Stanford Parallel Applications for Shared Memory
® Mix of kernels and applications, strong scaling

® NAS (NASA Advanced Supercomputing) suite
® computational fluid dynamics kernels

® PARSEC (Princeton Application Repository for Shared Memory
Computers) suite

m Multithreaded applications using Pthreads and OpenMP

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

36

Code or Applications?

m Traditional benchmarks
® Fixed code and data sets

m Parallel programming 1s evolving

® Should algorithms, programming languages, and tools be part of
the system?

® Compare systems, provided they implement a given application
m E.g., Linpack, Berkeley Design Patterns

B Would foster innovation in approaches to parallelism

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 37

Modeling Performance

B Assume performance metric of interest 1s achievable
GFLOPs/sec

®m Measured using computational kernels from Berkeley Design
Patterns

B Arithmetic intensity of a kernel
m FLOPs per byte of memory accessed

® For a given computer, determine
®m Peak GFLOPS (from data sheet)
® Peak memory bytes/sec (using Stream benchmark)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 38

64.0

32.0
© . .

eak floating-point performance

S 16.0 P gpontp
(0]
R
@ 8.0
5 .
—
G
Q 4.0
o]
©
= : :
s 20 i Kernel 1 : Kernel 2
< : (Memory : (Computation

1.0 : Bandwidth : limited)

¢ limited) :

Y

0.5 : :
/A 1 2 4 8 16

Arithmetic Intensity: FLOPs/Byte Ratio

Attainable GPLOPs/sec
= Max (Peak Memory BW x Arithmetic Intensity, Peak FP Performance)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

39

Comparing Systems

m Example: Opteron X2 vs. Opteron X4
m 2-core vs. 4-core, 2% FP performance/core, 2.2GHz vs. 2.3GHz

B Same memory system

128.0 } Opteron X4 (Barcelona) .
> A To get higher performance on X4
| than X2
© 320
S 160 . Need high arithmetic intensity
Lg'): o \/ Or working set must fit in X4’s 2MB
§ 4.0 “."" Opteron X2 L-3 cache
L] V4
£ 20f
1.0
0.5

Vo Yy Yy 1 2 4 8 16
Actual FLOPbyte ratio

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 40

Optimizing Performance

AMD Opteron

64.0

® Optimize FP performance
® Balance adds & multiplies

)
I
<)

@ peak floating-point performance

@(b
\S
Q)@ 1. FI. Pt. imbalance

Q
(QO

=
o
<)

® Improve superscalar ILP and use of
SIMD instructions

B Optimize memory usage

40 [S
&
2. Without ILP or SIMD

Attainable GFLOPs/second
©
o

2.0

10
m Software prefetch 0s .
®m Avoid load stalls " tmete ery: sy
® Memory affinity y .
® Avoid non-local data accesses :Z

peak floating-point performance

16.0

8.0

Attainable GFLOPs/second

0.5 >
g N Yp 1 2 4 8 16

Arithmetic Intensity: FLOPs/Byte Ratio

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 41

Optimizing Performance

® Choice of optimization depends on arithmetic intensity of

code
A : o~ "
G Arithmetic intensity is not always
820 fixed
3 160 May scale with problem size
% 8.0 Caching reduces memory
S 40 accesses
g 0 Increases arithmetic
e intensity

1/8 Vg4 12 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 42

Four Example Systems

Core | Core | | Core | Core Core | Core | | Core | Core
2 x quad-core
I 1 Intel Xeon €5345
\ FSB \ FSB

10.66 GB/s :: :: 10.66 GB/s (C lovertown)

| Chipset (4x64 b controllers)
21.33 GB/s(read) ﬁﬁ uu 10.66 GB/s(write)

667 MHz FBDIMMs

HyperTransport
4 GB/s
(each direction)
HyperTransport

2 x quad-core
T . 7 AMD Opteron X4 2356

SRI/crossbar SRlI/crossbar

2x64 b memory controllers I | 2x64 b memory controllers I (B a rce | 0 n a)
Y
10.66 GB/s vy 10.66 GB/s
667 MHz DDR2 DIMMs 667 MHz DDR2 DIMMs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 43

xample Systems

s
Crossbar Switch (16 Byte reads 8 Byte writes § Crossbar Switch (16 Byte reads 8 Byte writes 2 x t
Q P -
90 GB/s (writethru) 179 GB/s (fill) @ a 179 GB/s (fill) ; 90 GB/s (writethru) OcCt-core
=)
< <
st Sun UltraSPARC
4 Coherency Hubs (2 banks éach) 4 Coherency Hubs (2 banks éach) 1
| T2 5140 (Niagara 2
2x128 b memory controllers (4 banks each) 2x128 b memory controllers (4 banks each)
21.33 GB/s (read) 10.66 GB/s (write) 10.66 GB/s (write) 21.33 GB/s (read)
667 MHz FBDIMMs 667 MHz FBDIMMs
SPE | SPE | SPE | SPE VMT VMT SPE | SPE | SPE | SPE
PPE PPE
256 K| 256 K|256 K|256 K 256 K|256 K |256 K [256 K
MFC | MFC | MFC | MFC MFC | MFC | MFC | MFC
Ay Ay Ay Ay = Ay Ay 4y 4y
EIB (Ring Network) 23 | EIB (Ring Network) |
IV Iy Fv &V kv kv | O2| Ay kv KV Ky Ky £y 2 x oct-core
MFC | MFC | MFC | MFC [V8 » | MFC | MFC | MFC | MFC
g2 — 1 o |22 IBM Cell QS20
256 K|256 K |256 K |256 K © g BIF BIF Q g 256 K|256 K |256 K [256 K
< < < C
SPE | SPE | SPE [SPE| 8 8 | SPE | SPE | SPE | SPE
25.6 GB/s W m%ﬁ GB/s
<32 GB 800 MHz DDR2 DIMMs <32 GB 800 MHz DDR2 DIMMs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 44

And Their Rooflines

mKernels
m SpMV (left)
m LBHMD (right)
mSome optimizations change
arithmetic intensity

mx86 systems have higher peak
GFLOPs

® But harder to achieve, given
memory bandwidth

A
ek 0 Peak DP
64.0

mul/add imb4
32.0

16.0
8.0

4.0 w/out ILP

Attainable GFLOP/s

2.0

1.0 /:/

S

0'51|11 3
lg 1, 1, 1 2 4 8 16

Actual FLOPbyte ratio

a. Intel Xeon €5345 (Clovertown)

A
128.0
64.0

32.0
Peak DP

25% issued = FP

16.0

8.0
4.0

Attainable GFLOP/s

2.0
1.0

0'5111 4
e, 1 2 4 8 416

Actual FLOPbyte ratio
c¢. Sun UltraSPARC T2 5140 (Niagara 2)

University of Texas at Austin CS352H - Computer Systems Architecture

A
128.0 Peak DP
64.0

32.0
16.0

8.0

4.0 P
2.0 /
| |

1.0 1 '
|

0.5 ¥) >
o Yy Yy 12 4 8 16

Actual FLOPbyte ratio
b. AMD Opteron X4 2356 (Barcelona)

w/out ILP

Attainable GFLOP/s

A
128.0

64.0
D\U-, 320 Peak DP
o) w/out FMA
o 16.0
0] w/out SIMD
o 80 /
T i t ILP
g 40 : w/ou
s W
2 20Y)
|
1.0 |1
|
1

0'5111 <
i, ™2 4 B8 16

Actual FLOPbyte ratio
d. IBM Cell QS20

Fall 2009 Don Fussell 45

Performance on SpMV

B Sparse matrix/vector multiply
B [rregular memory accesses, memory bound

® Arithmetic intensity
® (0.166 before memory optimization, 0.25 after

Xeon vs. Opteron

6.0 Similar peak FLOPS
50 e Xeon limited by shared FSBs and
. Opteron X4 2356 ‘ Chipset

\ UltraSPARC T2

UltraSPARC/Cell vs. x86
20 — 30 vs. 75 peak GFLOPs
More cores and memory

8 9 10 11 12 13 14 15 16 bandwidth

Cores

GFLOPs/sec

Xeon 5346

1 2 383 4 5 6 7

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 46

Performance on LBMHD

® Fluid dynamics: structured grid over time steps
® Each point: 75 FP read/write, 1300 FP ops

® Arithmetic intensity
® (.70 before optimization, 1.07 after

Opteron X4 2356 Cell QS20

GFLOPs/sec
o]
o

UltraSPARC T2

Xeon 5345

0-0 T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Cores

Opteron vs. UltraSPARC

More powerful cores, not limited
by memory bandwidth

Xeon vs. others

Still suffers from memory
bottlenecks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 47

Achieving Performance

B Compare naive vs. optimized code

® [f naive code performs well, it’s easier to write high performance
code for the system

System Kernel Naive Optimized Naive as % of
GFLOPs/sec GFLOPs/sec optimized

Intel Xeon SpMV 1.0 1.5 64%
LBMHD 4.6 5.6 82%
AMD SpMV 1.4 3.6 38%
Opteron X4 LBMHD 7.1 14.1 50%
Sun UltraSPARC SpMV 3.5 4.1 86%
T2 LBMHD 9.7 10.5 93%
IBM Cell QS20 SpMV Naive code not 6.4 0%
LBMHD feasible 16.7 0%

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 48

Fallacies

® Amdahl’s Law doesn’t apply to parallel computers
® Since we can achieve linear speedup
® But only on applications with weak scaling

®m Peak performance tracks observed performance

®m Marketers like this approach!
® But compare Xeon with others in example

® Need to be aware of bottlenecks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 49

Pitfalls

® Not developing the software to take account of a
multiprocessor architecture

®m Example: using a single lock for a shared composite resource
m Serializes accesses, even if they could be done in parallel
m Use finer-granularity locking

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 50

Concluding Remarks

®m Goal: higher performance by using multiple processors
® Difficulties

®m Developing parallel software

®m Devising appropriate architectures
B Many reasons for optimism

® Changing software and application environment

®m Chip-level multiprocessors with lower latency, higher bandwidth
interconnect

® An ongoing challenge for computer architects!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 51

