
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS 352H: Computer Systems Architecture

Topic 14: Multicores, Multiprocessors, and
Clusters

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Introduction

Goal: connecting multiple computers
to get higher performance

Multiprocessors
Scalability, availability, power efficiency

Job-level (process-level) parallelism
High throughput for independent jobs

Parallel processing program
Single program run on multiple processors

Multicore microprocessors
Chips with multiple processors (cores)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

Hardware and Software

Hardware
Serial: e.g., Pentium 4
Parallel: e.g., quad-core Xeon e5345

Software
Sequential: e.g., matrix multiplication
Concurrent: e.g., operating system

Sequential/concurrent software can run on serial/parallel
hardware

Challenge: making effective use of parallel hardware

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

What We’ve Already Covered

§2.11: Parallelism and Instructions
Synchronization

§3.6: Parallelism and Computer Arithmetic
Associativity

§4.10: Parallelism and Advanced Instruction-Level
Parallelism
§5.8: Parallelism and Memory Hierarchies

Cache Coherence
§6.9: Parallelism and I/O:

Redundant Arrays of Inexpensive Disks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Parallel Programming

Parallel software is the problem
Need to get significant performance improvement

Otherwise, just use a faster uniprocessor, since it’s easier!

Difficulties
Partitioning
Coordination
Communications overhead

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Amdahl’s Law

Sequential part can limit speedup
Example: 100 processors, 90× speedup?

Tnew = Tparallelizable/100 + Tsequential

Solving: Fparallelizable = 0.999

Need sequential part to be 0.1% of original time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz

=
+!

=

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Scaling Example

Workload: sum of 10 scalars, and 10 × 10 matrix sum
Speed up from 10 to 100 processors

Single processor: Time = (10 + 100) × tadd
10 processors

Time = 10 × tadd + 100/10 × tadd = 20 × tadd
Speedup = 110/20 = 5.5 (55% of potential)

100 processors
Time = 10 × tadd + 100/100 × tadd = 11 × tadd
Speedup = 110/11 = 10 (10% of potential)

Assumes load can be balanced across processors

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Scaling Example (cont)

What if matrix size is 100 × 100?
Single processor: Time = (10 + 10000) × tadd

10 processors
Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Strong vs Weak Scaling

Strong scaling: problem size fixed
As in example

Weak scaling: problem size proportional to
number of processors

10 processors, 10 × 10 matrix
Time = 20 × tadd

100 processors, 32 × 32 matrix
Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

Constant performance in this example

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Shared Memory

SMP: shared memory multiprocessor
Hardware provides single physical
address space for all processors
Synchronize shared variables using locks
Memory access time

UMA (uniform) vs. NUMA (nonuniform)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Example: Sum Reduction

Sum 100,000 numbers on 100 processor UMA
Each processor has ID: 0 ≤ Pn ≤ 99
Partition 1000 numbers per processor
Initial summation on each processor

 sum[Pn] = 0;
 for (i = 1000*Pn;
 i < 1000*(Pn+1); i = i + 1)
 sum[Pn] = sum[Pn] + A[i];

Now need to add these partial sums
Reduction: divide and conquer
Half the processors add pairs, then quarter, …
Need to synchronize between reduction steps

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Example: Sum Reduction

half = 100;
repeat
 synch();
 if (half%2 != 0 && Pn == 0)
 sum[0] = sum[0] + sum[half-1];
 /* Conditional sum needed when half is odd;
 Processor0 gets missing element */
 half = half/2; /* dividing line on who sums */
 if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until (half == 1);

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Message Passing

Each processor has private physical address space
Hardware sends/receives messages between processors

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Loosely Coupled Clusters

Network of independent computers
Each has private memory and OS
Connected using I/O system

E.g., Ethernet/switch, Internet

Suitable for applications with independent tasks
Web servers, databases, simulations, …

High availability, scalable, affordable
Problems

Administration cost (prefer virtual machines)
Low interconnect bandwidth

c.f. processor/memory bandwidth on an SMP

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Sum Reduction (Again)

Sum 100,000 on 100 processors
First distribute 100 numbers to each

The do partial sums
 sum = 0;

for (i = 0; i<1000; i = i + 1)
 sum = sum + AN[i];

Reduction
Half the processors send, other half receive and add
The quarter send, quarter receive and add, …

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Sum Reduction (Again)

Given send() and receive() operations
limit = 100; half = 100;/* 100 processors */
repeat
 half = (half+1)/2; /* send vs. receive
 dividing line */
 if (Pn >= half && Pn < limit)
 send(Pn - half, sum);
 if (Pn < (limit/2))
 sum = sum + receive();
 limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

Send/receive also provide synchronization
Assumes send/receive take similar time to addition

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Grid Computing

Separate computers interconnected by long-haul networks
E.g., Internet connections
Work units farmed out, results sent back

Can make use of idle time on PCs
E.g., SETI@home, World Community Grid

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

Multithreading

Performing multiple threads of execution in parallel
Replicate registers, PC, etc.
Fast switching between threads

Fine-grain multithreading
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed

Coarse-grain multithreading
Only switch on long stall (e.g., L2-cache miss)
Simplifies hardware, but doesn’t hide short stalls (eg, data
hazards)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Simultaneous Multithreading

In multiple-issue dynamically scheduled processor
Schedule instructions from multiple threads
Instructions from independent threads execute when function units
are available
Within threads, dependencies handled by scheduling and register
renaming

Example: Intel Pentium-4 HT
Two threads: duplicated registers, shared function units and caches

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

Multithreading Example

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

Future of Multithreading

Will it survive? In what form?
Power considerations ⇒ simplified microarchitectures

Simpler forms of multithreading

Tolerating cache-miss latency
Thread switch may be most effective

Multiple simple cores might share resources more
effectively

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

Instruction and Data Streams

An alternate classification

MIMD:
Intel Xeon e5345

MISD:
No examples today

Multiple

SIMD: SSE
instructions of x86

SISD:
Intel Pentium 4

SingleInstruction
Streams

MultipleSingle
Data Streams

SPMD: Single Program Multiple Data
A parallel program on a MIMD computer
Conditional code for different processors

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

SIMD

Operate elementwise on vectors of data
E.g., MMX and SSE instructions in x86

Multiple data elements in 128-bit wide registers

All processors execute the same instruction at the same
time

Each with different data address, etc.
Simplifies synchronization
Reduced instruction control hardware
Works best for highly data-parallel applications

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Vector Processors

Highly pipelined function units
Stream data from/to vector registers to units

Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to MIPS
32 × 64-element registers (64-bit elements)
Vector instructions

lv, sv: load/store vector
addv.d: add vectors of double
addvs.d: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

Example: DAXPY (Y = a × X + Y)

 Conventional MIPS code
 l.d $f0,a($sp) ;load scalar a
 addiu r4,$s0,#512 ;upper bound of what to load
loop: l.d $f2,0($s0) ;load x(i)
 mul.d $f2,$f2,$f0 ;a × x(i)
 l.d $f4,0($s1) ;load y(i)
 add.d $f4,$f4,$f2 ;a × x(i) + y(i)
 s.d $f4,0($s1) ;store into y(i)
 addiu $s0,$s0,#8 ;increment index to x
 addiu $s1,$s1,#8 ;increment index to y
 subu $t0,r4,$s0 ;compute bound
 bne $t0,$zero,loop ;check if done

 Vector MIPS code
 l.d $f0,a($sp) ;load scalar a
 lv $v1,0($s0) ;load vector x
 mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
 lv $v3,0($s1) ;load vector y
 addv.d $v4,$v2,$v3 ;add y to product
 sv $v4,0($s1) ;store the result

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

Vector vs. Scalar

Vector architectures and compilers
Simplify data-parallel programming
Explicit statement of absence of loop-carried dependences

Reduced checking in hardware
Regular access patterns benefit from interleaved and burst memory
Avoid control hazards by avoiding loops

More general than ad-hoc media extensions (such as
MMX, SSE)

Better match with compiler technology

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

History of GPUs

Early video cards
Frame buffer memory with address generation for video output

3D graphics processing
Originally high-end computers (e.g., SGI)
Moore’s Law ⇒ lower cost, higher density
3D graphics cards for PCs and game consoles

Graphics Processing Units
Processors oriented to 3D graphics tasks
Vertex/pixel processing, shading, texture mapping,
rasterization

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 28

Graphics in the System

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 29

GPU Architectures

Processing is highly data-parallel
GPUs are highly multithreaded
Use thread switching to hide memory latency

Less reliance on multi-level caches
Graphics memory is wide and high-bandwidth

Trend toward general purpose GPUs
Heterogeneous CPU/GPU systems
CPU for sequential code, GPU for parallel code

Programming languages/APIs
DirectX, OpenGL
C for Graphics (Cg), High Level Shader Language (HLSL)
Compute Unified Device Architecture (CUDA)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 30

Example: NVIDIA Tesla

Streaming
multiprocessor

8 × Streaming
processors

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

Example: NVIDIA Tesla

Streaming Processors
Single-precision FP and integer units
Each SP is fine-grained multithreaded

Warp: group of 32 threads
Executed in parallel,
SIMD style

8 SPs
× 4 clock cycles

Hardware contexts
for 24 warps

Registers, PCs, …

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

Classifying GPUs

Don’t fit nicely into SIMD/MIMD model
Conditional execution in a thread allows an illusion of MIMD

But with performance degradation
Need to write general purpose code with care

Tesla MultiprocessorSIMD or VectorData-Level
Parallelism

SuperscalarVLIWInstruction-Level
Parallelism

Dynamic: Discovered at
Runtime

Static: Discovered
at Compile Time

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

Interconnection Networks

Network topologies
Arrangements of processors, switches, and links

Bus Ring

2D Mesh
N-cube (N = 3)

Fully connected

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 34

Multistage Networks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 35

Network Characteristics

Performance
Latency per message (unloaded network)
Throughput

Link bandwidth
Total network bandwidth
Bisection bandwidth

Congestion delays (depending on traffic)
Cost
Power
Routability in silicon

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 36

Parallel Benchmarks

Linpack: matrix linear algebra
SPECrate: parallel run of SPEC CPU programs

Job-level parallelism
SPLASH: Stanford Parallel Applications for Shared Memory

Mix of kernels and applications, strong scaling
NAS (NASA Advanced Supercomputing) suite

computational fluid dynamics kernels
PARSEC (Princeton Application Repository for Shared Memory
Computers) suite

Multithreaded applications using Pthreads and OpenMP

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 37

Code or Applications?

Traditional benchmarks
Fixed code and data sets

Parallel programming is evolving
Should algorithms, programming languages, and tools be part of
the system?
Compare systems, provided they implement a given application
E.g., Linpack, Berkeley Design Patterns

Would foster innovation in approaches to parallelism

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 38

Modeling Performance

Assume performance metric of interest is achievable
GFLOPs/sec

Measured using computational kernels from Berkeley Design
Patterns

Arithmetic intensity of a kernel
FLOPs per byte of memory accessed

For a given computer, determine
Peak GFLOPS (from data sheet)
Peak memory bytes/sec (using Stream benchmark)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 39

Roofline Diagram

Attainable GPLOPs/sec
= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 40

Comparing Systems

Example: Opteron X2 vs. Opteron X4
2-core vs. 4-core, 2× FP performance/core, 2.2GHz vs. 2.3GHz
Same memory system

To get higher performance on X4
than X2

Need high arithmetic intensity
Or working set must fit in X4’s 2MB
L-3 cache

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 41

Optimizing Performance

Optimize FP performance
Balance adds & multiplies
Improve superscalar ILP and use of
SIMD instructions

Optimize memory usage
Software prefetch

Avoid load stalls
Memory affinity

Avoid non-local data accesses

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 42

Optimizing Performance

Choice of optimization depends on arithmetic intensity of
code

Arithmetic intensity is not always
fixed

May scale with problem size
Caching reduces memory
accesses

Increases arithmetic
intensity

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 43

Four Example Systems

2 × quad-core
Intel Xeon e5345
(Clovertown)

2 × quad-core
AMD Opteron X4 2356
(Barcelona)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 44

Four Example Systems

2 × oct-core
IBM Cell QS20

2 × oct-core
Sun UltraSPARC
T2 5140 (Niagara 2)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 45

And Their Rooflines

Kernels
SpMV (left)
LBHMD (right)

Some optimizations change
arithmetic intensity
x86 systems have higher peak
GFLOPs

But harder to achieve, given
memory bandwidth

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 46

Performance on SpMV

Sparse matrix/vector multiply
Irregular memory accesses, memory bound

Arithmetic intensity
0.166 before memory optimization, 0.25 after

Xeon vs. Opteron
Similar peak FLOPS
Xeon limited by shared FSBs and
chipset

UltraSPARC/Cell vs. x86
20 – 30 vs. 75 peak GFLOPs
More cores and memory
bandwidth

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 47

Performance on LBMHD

Fluid dynamics: structured grid over time steps
Each point: 75 FP read/write, 1300 FP ops

Arithmetic intensity
0.70 before optimization, 1.07 after

Opteron vs. UltraSPARC
More powerful cores, not limited
by memory bandwidth

Xeon vs. others
Still suffers from memory
bottlenecks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 48

Achieving Performance

Compare naïve vs. optimized code
If naïve code performs well, it’s easier to write high performance
code for the system

0%
0%

6.4
16.7

Naïve code not
feasible

SpMV
LBMHD

IBM Cell QS20

86%
93%

4.1
10.5

3.5
9.7

SpMV
LBMHD

Sun UltraSPARC
T2

38%
50%

3.6
14.1

1.4
7.1

SpMV
LBMHD

AMD
Opteron X4

64%
82%

1.5
5.6

1.0
4.6

SpMV
LBMHD

Intel Xeon

Naïve as % of
optimized

Optimized
GFLOPs/sec

Naïve
GFLOPs/sec

KernelSystem

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 49

Fallacies

Amdahl’s Law doesn’t apply to parallel computers
Since we can achieve linear speedup
But only on applications with weak scaling

Peak performance tracks observed performance
Marketers like this approach!
But compare Xeon with others in example
Need to be aware of bottlenecks

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 50

Pitfalls

Not developing the software to take account of a
multiprocessor architecture

Example: using a single lock for a shared composite resource
Serializes accesses, even if they could be done in parallel
Use finer-granularity locking

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 51

Concluding Remarks

Goal: higher performance by using multiple processors
Difficulties

Developing parallel software
Devising appropriate architectures

Many reasons for optimism
Changing software and application environment
Chip-level multiprocessors with lower latency, higher bandwidth
interconnect

An ongoing challenge for computer architects!

