CS352H: Computer Systems Architecture

Topic 8: MIPS Pipelined Implementation

September 29, 2009

o EEEEESSRRE

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

MIPS Pipeline

m Five stages, one step per stage

® [F: Instruction fetch from memory

® ID: Instruction decode & register read

® EX: Execute operation or calculate address
®m MEM: Access memory operand

WB: Write result back to register

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Pipeline Performance

® Assume time for stages is

100ps for register read or write

200ps for other stages

® Compare pipelined datapath with single-cycle datapath

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

W 200ps | 100 ps | 200ps | 200ps | 100 ps -

SwW 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

| 200ps 200ps

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell 3

Pipeline Performance

Single-cycle (T .= 800ps)

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800
order ' '] I ' | l | |
(in instructions)
Instruction Dat
Iw $1, 100($0) fetch |0e9| ALU ac:ezs Reg
[i D
lw $2, 200($0) 800 ps Meton|Reg| AU | o2 | Reg
Instruction
lw $3, 300($0) 800 ps fetch
: - 800 ps
Pipelined (T .= 200ps)
Program
execution Time 200 400 600 800 1000 1200 1400
order | ' ' ' | | |
(in instructions)
Instructi Dat
Iw $1, 1OO($0) nsf;l:ghlon Reg| ALU accaezs §ed
w $2,200(30) 200 ps | "t >"| |Res| AW | o2 |Reg
lw $3, 300($0) 200 ps |t Reg| AU | D% IReg

200 ps 200 ps 200 ps 200 ps 200 ps

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Pipeline Speedup

m [f all stages are balanced
® i.c., all take the same time

® Time between instructions ;. jieq

= Time between instructions

nonpipelined

Number of stages
® If not balanced, speedup is less
®m Speedup due to increased throughput

® Latency (time for each instruction) does not decrease

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Pipelining and ISA Design

m MIPS ISA designed for pipelining

= All instructions are 32-bits
= Easier to fetch and decode in one cycle
= c.f. x86: 1- to 17-byte instructions
® Few and regular instruction formats
® Can decode and read registers in one step
® [oad/store addressing
® Can calculate address in 3™ stage, access memory in 4t stage
B Alignment of memory operands
B Memory access takes only one cycle

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Hazards

® Situations that prevent starting the next instruction in the
next cycle
Structure hazards

B A required resource is busy

® Data hazard

®m Need to wait for previous instruction to complete its data
read/write

® Control hazard
® Deciding on control action depends on previous instruction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Structure Hazards

®m Conflict for use of a resource
® [n MIPS pipeline with a single memory

® [oad/store requires data access

® Instruction fetch would have to stall for that cycle
® Would cause a pipeline “bubble”

®m Hence, pipelined datapaths require separate
instruction/data memories

® Or separate instruction/data caches

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

8

Data Hazards

® An instruction depends on completion of data access by a
previous instruction

= add $s0, $t0, $t1
sub $t2, $s0, $t3

200 400 600 800 1000 1200 1400 1600
T | | T T | | >

add $s0, $t0, $t1 | IF —= ID E MEM WB |

bubble bubble bubble bubble bubble
<9 @, @ O O

bubble bubble) (" bubble bubble) (" bubble
<9, @ O O O
sub $t2, $s0, $t3 IF —5 ID E MEM WB |

Time

\/

\/

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Forwarding (aka Bypassing)

® Use result when 1t 1s computed
® Don’t wait for 1t to be stored 1n a register
® Requires extra connections in the datapath

Program
execution . 200 400 600 800 1000
order Time . ' ; '

(in instructions)

add $s0, $t0, $t1 IF

sub $t2, $s0, $t3 MEM WB |

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

10

lL.oad-Use Data Hazard

®m Can’t always avoid stalls by forwarding
m [f value not computed when needed
® Can’t forward backward in time!

Program
T . 200 400 600 800 1000 1200 1400
order Time : T : : . . T
(in instructions) I .
lw $s0, 20($t1) IF —5 ID SEX—MEM
bubble bubble bubble bubble bubble
© O O O O
sub $t2, $s0, $t3 IF —- MEM—{ WB |

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

11

Code Scheduling to Avoid Stalls

B Reorder code to avoid use of load result in the next
instruction

®# CcodeforA=B+E:C=B+F;

w $t1, 0($t0) w $t1, 0($t0)

w ($t2, %($t0) w (312, %($t0)
—» add $t3, $t1, I a1
sw $t3, 12($t0) / add $t3,

Iw 0)

a0 365 51 Gt4) add 15, St @
sw $t5, 16(5t0) sw $t5, 16(5t0)
13 cycles 11 cycles

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

12

Control Hazards

® Branch determines flow of control
= Fetching next instruction depends on branch outcome

® Pipeline can’t always fetch correct instruction
m Still working on ID stage of branch

® [n MIPS pipeline
® Need to compare registers and compute target early in the pipeline
® Add hardware to do 1t in ID stage

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Stall on Branch

® Wait until branch outcome determined before fetching next

Instruction

Program
execution Time 200 400 600 800 1000 1200 1400 N
ofder T T T | T T T &
(in instructions)

adas4,55,56 "] [res au [2o [res

- ol i Dat
beq $1’ $2’ 40 200 ps nsftg:gf:lon Reg ALU ac:e:s Reg
bubble¢ bubble/ bubble/ bubble/(bubble
O @ @
or $7, $8, $9 - »{Instruction Data
\ 400 ps fetch Reeli U access |9

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Branch Prediction

®m Longer pipelines can’t readily determine branch outcome
early

m Stall penalty becomes unacceptable

= Predict outcome of branch

= Only stall if prediction 1s wrong

® [n MIPS pipeline
®m Can predict branches not taken
® Fetch instruction after branch, with no delay

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

PS with Predict Not Taken

Program
execution Time 290 4(|)0 690 890 10100 12100 14|00 h
order
(in instructions)
Prediction add $4’ $5’ $6 lnsftgtj(()::]ion Reg ALU aE;;zs Reg
Instructi Dat
correct beq $1, 82,40 <o Teen | [e8| AU | aonoss |Pes
~——{[nstruction Data
lw $3, 300($0) 200 ps | fetch Reg| ALU | ccess |Fe9
\
Program
execution Time 200 400 600 800 1000 1200 1400 N
Order T T T T T T T
(in instructions)
Instruction Data
Pred|ct|0n add $4, $5, $6 fe'ltllchI Reg Ll access Reg
. Instructi Dat
incorrect beq $1,82,40 <o+ Ten | |Re| AW acess |Fe9
bubble/bubble/(bubble/bubble/(bubble
O 9 @
—or $7, $8, $9 - »Instruction Data
v 400 ps fetch L access | 19

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

More-Realistic Branch Prediction

® Static branch prediction
® Based on typical branch behavior
= Example: loop and if-statement branches

® Predict backward branches taken
m Predict forward branches not taken

® Dynamic branch prediction

®m Hardware measures actual branch behavior

me.g., record recent history of each branch

B Assume future behavior will continue the trend
® When wrong, stall while re-fetching, and update history

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

17

Pipeline Summary

B Pipelining improves performance by increasing instruction
throughput
® Executes multiple instructions in parallel
® Each instruction has the same latency
B Subject to hazards
® Structure, data, control

B Instruction set design affects complexity of pipeline
implementation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

PS Pipelined Datapath

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access

Add		~
4] Add .		
: : L result i :		
	[Shift I	
1 \left2		
. M : Read Read : >	:	
" pC Address	register 1 data 1	
X	Read	
1)	register 2	Address
/ Instruction ! Registers i >/ 0 , : Rd‘ﬁ:		
Write Read		
M E M Instruction : register dateaa 2 : o I MeD:1t:ry :		
memory X I		
Write	1	
: data : ! Write :		
		data
.		
Right-to-left A M\ . .		
g WB	o S	\ !
flow leads to :		:
hazards		1 !
	i	
	'	
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Pipeline registers

® Need registers between stages
® To hold information produced in previous cycle

IF/ID ID/EX EX/MEM MEM/WB
>
Add
4
0
v 5
u PC Address 3 Read
x F register 1 Read >
>\ 2 data 1
c
= o | Read
Instruction . register 2 oy
el - B i Registers Read > »-| Address data || 0
> Write data 2 o
register . o
| Write MermoTy 1x
data
— _ | Write

data
16 i ~
T | Sign- 32 ‘ >
| extend

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

20

Pipeline Operation

®m Cycle-by-cycle flow of instructions through the pipelined
datapath

®m “Single-clock-cycle” pipeline diagram
= Shows pipeline usage in a single cycle
® Highlight resources used

m c.f. “multi-clock-cycle” diagram
® Graph of operation over time

m We’ll look at “single-clock-cycle” diagrams for load &
store

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

IF for Load, Store, ...

Iw
|

! Instruction fetch

IF/ID ID/EX EX/MEM MEM/WB
>Add > ~
‘G oot
Shift
left 2
—-(0
M c
u PC Address % Read
X 2 " | register 1 Read >
1 2 data 1
= Read
Instruction _ register2 N
memory > _{:: - Registers Rgaq - > - = i~
rite data 2 ¢
register Data
Write memory
data
» o | Write
. 7| data
16 : >
X . | Sign- 32 >
7\ extend

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

ID for Load, Store, ...

w
I I

| Instruction decode

IF/ID ID/EX EX/MEM MEM/WB
——
4 —> e
Shift
left 2
0
M c
u PC Address -% Read
x 2 register 1 Read >
1 ‘g data 1
— Read e
Instruction _ register2 Read
memory Lt) Registers geaq o > ~@—»| Address data ™1

Write data 2 -

register Data

Write memory

data

. | Write
e 7| data
16 >
AY r—
A}

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

=X for LLoad

[\

Execution

PC

\/

IF/D ID/EX EX/MEM MEM/WB
% > > \‘
4 AdgAdd R
Shift result
left 2 /
Address Read
-g " | register 1 el
1£) data 1
= Read > >
Instruction . S| |[register2 N Read
memory DI L > Address data o
" | register data 2 Data .
Write memory &
data
Write
> > data
1‘? _ [Sign- 32 | >
v | extend
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

MEM for L.oad

| Iw |
| Memory !
IF/ID ID/EX EX/MEM MEM/WB
) .
Shift
left 2
0
M f=4
u PC Address % Read
o 2 register 1 Read >
L g data 1
— Read .
Instruction o register2 - rong
memory >) Registers po,q R ~ Addross ead |, |
Write data 2 > >
register o
| Write memory
data
» o | Write
g 7| data
Sign- >
extend

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

WB for Load

‘ lw
Write back

IF/ID ID/EX EX/MEM MEM/WB
>Add > > >
4 > Add
Shift result
left 2
0
M c
u Address 2 Read
X 2 " | register 1 Read >
1 ‘é data 1
I= ~ .
Instruction |~ 2 Read
memory w Registers Roag > > @ Address >
< T > data
\ Data
~— memory
. | Write
. " | data
16\ _ | Sign- 32 >
W T 7| extend

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

Corrected Datapath for Load

IF/ID ID/EX EX/MEM MEM/WB

Shift result
left 2

Write

11

register

Write
data

data 2

Sign-
extend

Data

memory

c
u PC Address S _ | Read
3 i Read
= = register 1 >
’ 9 data 1
— Read >
Instruction register2 > N
memory Registers Roqq o> o

Y

University of Texas at Austin CS352H -

Computer Systems Architecture

Fall 2009 Don Fussell

X for Store

| - |
| Execution |
IF/ID ID/EX EX/MEM MEM/WB
4 Gapu
Shift result
left 2
PC > Address c Read R
2 register 1 ead > >
S data 1
= Read Zero >
Instruction < register 2 ALU ALu| Read 5
memory —e — Registers = result [>| Address data [M

register data 2 Data u

Write) memory &

data

< _ | Write
. 7| data
1? Sign- | 32 || -
V| extend
Fall 2009 Don Fussell 28

University of Texas at Austin CS352H - Computer Systems Architecture

MEM for Store

| . I
| Memory !
IF/ID ID/EX EX/MEM MEM/WB
4 Add
Shift result
left 2
0
M c
u PC Address _% Read
x 2 register 1 Read >
¢ B data 1
= Read > o
Instruction _ register2 -
memory w Registers peqq > > @ Address data ™1
Write data 2 >
register N
_>Write memory
data
> o | Write
o 7| data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 29

WB for Store

‘ sw
W

University of Texas at Austin CS352H - Computer Systems Architecture

rite-back
IF/ID ID/EX EX/MEM MEM/WB
) rosun
Shift
left 2
c
Address ,% Read

S register 1 Read >

k7] data 1

£ Read =

Instruction o register2 N
memory > A Registers Roaq > > L@-»| Address o b .
Write data 2 v
register Data "
Write memory X
data 1
> o | Write
. 7| data
Sign- >
extend

Fall 2009 Don Fussell 30

Multi-Cycle Pipeline Diagram

® Form showing resource usage

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 cCc7 CcC8 CC9

Program
execution
order

(in instructions)

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

Iw $13, 24($1)

gl

—1

add $14, $5, $6

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

31

Multi-Cycle Pipeline Diagram

B Traditional form

Program
execution
order

(in instructions)

lw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
Iw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CcCe6 CC7 ccs CC9
Instruction | Instruction e oion Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction . Data .
ok doc Execution L e Write back
Instruction | Instruction Execution Data Write back
fetch decode access

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

Single-Cycle Pipeline Diagram

m State of pipeline in a given cycle

| add $14, $5, $6 | lw $13, 24 ($1) | add $12, $3, $4 | sub $11, $2, $3 | Iw $10,20($1) |
| Instruction fetch | Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEM/WB
4 —> / Add Add
Shift result
left 2
(0
M
u PC Address Read
X s register 1 Read
.| B data 1
Instruction £ . ALU
Regist ALU Read
memory —t Write Rl ?::Zdz OM result Address data []
register - Data
Writ
— dartlae) 1x memory
Write
data
1§ Sign- 32 >
X extend 7R

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

Pipelined Control (

Simplified)

University of Texas at Austin CS352H -

IF/ID

ID/EX

Address

Instruction
memory

Instruction

RegWrite
|

o | Read

Read

| register 1
egiste stan]

Read

\

register 2
Registers,
Wite 2 Read

Y

register data 2

—-| Write
data

Shift
left 2

Adg"%d

EX/MEM

?u"

Instruction
(15-0) 16 [sign-

V7| extend

Instruction
(20-16)

32

Y

Branch
I—j_

MemWrite
1

PCSrc

Address

Data
memory

Write

\

4/0’

Instruction
(15-11)

> 0
M

ALU
control

ALUOp

data

Read
data

MEM/WB

\

|
MemRead

MemtoReg

u

1
> —

RegDst

Computer Systems Architecture

Fall 2009 Don Fussell

34

Pipelined Control

B Control signals derived from instruction

B As in single-cycle implementation

\ WB
Instruction \
Control M WB L
EX [M — wB|
IF/ID ID/EX EX/MEM MEM/WB

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

35

Pipelined Control

PCSrc
ID/EX
we LfX/MEM
> Control M wB | MEM/WB
EX M WB [—
IF/ID
Add \'
i Adg Add
Shift result Branch
pet left 2 L]
S ALUSrc
[o2
& [)

OM g =
u PC Address 5 Read 1 15
M 5 register 1 Read 2 £

1] data 1 S E

B Fieadt h Zero = =
Instruction o [CRLE ALU ALy Read
memory Write Reglsterst?ag -0 result JTT Address data ||| OM
> : ata M
register u Data u
Write X memol X
data 1 g 1
Write
o data
Instruction
[15-0] 19 sign- | 32 5 [Au
v | extend 1 control MemRead
Instruction
[20-16]
> 0
M >
Instruction u
[15-11] X

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

36

Concluding Remarks

® [SA influences design of datapath and control
®m Datapath and control influence design of ISA

® Pipelining improves instruction throughput
using parallelism
® More instructions completed per second
® Latency for each instruction not reduced

® Hazards: structural, data, control

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 37

