
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS352H Computer Systems
Architecture

Lecture 2: Instruction Set Architectures I

September 1, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

ISA is a Contract

Between the programmer and the hardware:
Defines visible state of the system
Defines how the state changes in response to instructions

Programmer obtains a model of how programs will execute
Hardware designer obtains a formal definition of the correct way to
execute instructions
ISA Specification:

Instruction set
How instructions modify the state of the machine
Binary representation

Today: MIPS ISA

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

ISA is a Contract

Between the programmer and the hardware:
Defines visible state of the system
Defines how the state changes in response to instructions

Programmer obtains a model of how programs will execute
Hardware designer obtains a formal definition of the
correct way to execute instructions
ISA Specification:

Instruction set
How instructions modify the state of the machine
Binary representation

Today: MIPS ISA

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

ISA Specification

Machine state
Memory organization
Register organization

Instruction formats
Instruction types
Addressing modes

Data types
Operations
Interrupts/Events

Instruction
Representation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

MIPS ISA

32 GP registers (R0-R31) – 32 bits each
32 FP registers (F0-F31) – 32 bits each

16 double-precision (using adjacent 32-bit registers)
8-, 16-, and 32-bit integer & 32- and 64-bit floating point data types
Load/Store architecture (no memory access in ALU ops)
A few, simple addressing modes:

Immediate: R1  0x21
Displacement: R1  0x100(R2)

Simple fixed instruction format
Three types
<100 instructions

Fused compare and branch
Pseudo instructions
Designed for pipelining and ease of compilation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

MIPS ISA: A Visual

Instruction Categories
Computational
Load/Store
Jump and Branch
Floating Point
Memory Management
Special

R0 - R31

PC
HI
LO

Registers

OP

OP

OP

rs rt rd shamt funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

Memory

32 32

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

MIPS Register Convention

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$k0 - $k1 26-27 reserved for interrupts/traps n.a.
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

MIPS Arithmetic Instructions

Instruction Example Meaning Comment
add add $8, $9, $10 $8 = $9 + $10 3 opnds; Exception possible
subtract sub $8, $9, $10 $8 = $9 - $10 3 opnds; Exception possible
add immediate addi $8, $9, 100 $8 = $9 + 100 + const; Exception possible
add unsigned addu $8, $9, $10 $8 = $9 + $10 3 opnds; No exception
subtract unsigned subu $8, $9, $10 $8 = $9 - $10 3 opnds; No exception
add imm. Unsig. addiu $8, $9, 100 $8 = $9 + 100 + const; No exception
multiply mult $8, $9 Hi,Lo = $8 * $9 64-bit signed product
multiply unsigned multu $8, $9 Hi,Lo = $8 * $9 64-bit unsigned product

divide div $8, $9 Lo = $8 ÷$9
Hi = $8 mod $9

Lo = quotient
Hi = remainder

divide unsigned divu $8, $9 Lo = $8 ÷$9
Hi = $8 mod $9

Unsigned quotient &
remainder

move from Hi mfhi $8 $8 = Hi
move from Lo mflo $8 $8 = Lo

Which add for address arithmetic? Which for integers?

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Multiply & Divide

Start multiply/Divide
mult rs, rt
multu rs, rt
div rs, rt
divu rs, rt

Move result from Hi or Lo
mfhi rd
mflo rd

Move to Hi or Lo (Why?)
mthi rd
mtlo rd

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

MIPS Logical Instructions

Instruction Example Meaning Comment
and and $8, $9, $10 $8 = $9 & $10 3 opnds; Logical AND
or or $8, $9, $10 $8 = $9 | $10 3 opnds; Logical OR
xor xor $8, $9, $10 $8 = $9 ⊕ $10 + const; Logical XOR
nor nor $8, $9, $10 $8 = ~($9 | $10) 3 opnds; Logical NOR
and immediate andi $8, $9, 10 $8 = $9 & 10 Logical AND; Reg, Const
or immediate ori $8, $9, 10 $8 = $9 | 10 Logical OR; Reg, Const
shift left logical sll $8, $9, 10 $8 = $9 << 10 Shift left by constant
shift right logical srl $8, $9, 10 $8 = $9 >> 10 Shift right by constant
shift right arith. sra $8, $9, 10 $8 = $9 >> 10 Const srl with sign extension
shift left logical sllv $8, $9, $10 $8 = $9 << $10 Shift left by variable
shift right logical srlv $8, $9, $10 $8 = $9 >> $10 Shift right by variable
shift right arith. srav $8, $9, $10 $8 = $9 >> $10 Var. srl with sign extension

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Byte Addresses

Since 8-bit bytes are so useful, most architectures address
individual bytes in memory

The memory address of a word must be a multiple of 4 (alignment
restriction)

Big Endian: leftmost byte is word address
 IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

Little Endian: rightmost byte is word address
Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

 Nowadays endian-ness is configurable

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3
big endian byte 0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

MIPS Data Transfer Instructions

Instruction Example Meaning

load word lw $8, 100($9) $8 = Mem[$9 + 100]
load half word lh $8, 102($9) $8 = Mem[$9 + 102]
load half word
unsigned

lhu $8, 102($9) $8 = Mem[$9 + 102]

load byte lb $8, 103($9) $8 = Mem[$9 + 103]
load byte unsigned lbu $8, 103($9) $8 = Mem[$9 + 103]
load upper immediate lui $8, 47 Upper 16 bits of $8 =

47
store word sw $8, 100($9) Mem[$9 + 100] = $8
store half word sh $8, 102($9) Mem[$9 + 102] = $8
store byte sb $8, 103($9) Mem[$9 + 103] = $8

• Where do half words & bytes get placed on lh & lb?
• What happens to the rest of the word on sb?

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

MIPS Compare and Branch

Compare and branch
beq rs, rt, offset if R[rs] == R[rt] then PC-relative branch
bne rs, rt, offset !=

Compare to zero and branch
blez rs, offset if R[rs] <= 0 then PC-relative branch
bgtz rs, offset >
bltz <
bgez >=
bltzal rs, offset if R[rs] < 0 then branch and link (into R31)
bgezal >=

Remaining compare and branches take two instructions
Almost all comparisons are against zero

Hence $0 is always 0!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

MIPS Jump, Branch & Compare Instructions

Instruction Example Meaning
branch on equal beq $8, $9, 100 If ($8 == $9) goto PC+4+100
branch on not equal bne $8, $9, 100 If ($8 != $9) goto PC+4+100
set on less than slt $8, $9, $10 If ($9 < $10) then $8 = 1 else $8 = 0;
set less than immed. slti $8, $9, 100 If ($9 < 100) then $8 = 1 else $8 = 0;
set less than unsig. sltu $8, $9, $10 If ($9 < $10) then $8 = 1 else $8 = 0;
set less than immed. unsig. sltiu $8, $9, 100 If ($9 < 100) then $8 = 1 else $8 = 0;
jump j 10004 goto 10004
jump register jr $31 goto $31
jump and link jal 10004 $31 = PC + 4; goto 10004

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Procedure Support

Caller
Save $t0 - $t9, if needed
Save $fp
Push arguments on stack (and
leave in $a0-$a3)
Set $fp to point to arg’s
Adjust $sp
jal

Callee
Save $s0-$s7, $ra as needed
Get arg’s
Do its thing
Put return values in $v0, $v1
jr $ra

Preserved state
$s0 - $s7
$sp
$ra

Not preserved
$t0 - $t9
$a0 - $a3
$v0, $v1

…
jal foo
Return here

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Machine Language: R-format

R format instructions: three operands

add $t0, $s1, $s2

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for constant shift instructions)

funct 6-bits function code augmenting the opcode

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Machine Language: I-format

I-format Instructions:
Load/store
Branches
Arithmetic with an immediate operand

op rs rt 16 bit offset

lw $t0, 24($s2)

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

offset 16-bits a constant value

beq $t0, $s2, offset

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

Machine Language: J-format

J-format instructions:
Jump
Jump and Link

op 26-bit address

 What about Jump Register?

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Register addressing – operand is in a register

Base (displacement) addressing – operand is at the memory location whose address
is the sum of a register and a 16-bit constant contained within the instruction

Register relative (indirect) with 0($a0)
Pseudo-direct with addr($zero)

Immediate addressing – operand is a 16-bit constant contained within the instruction

MIPS Operand Addressing Modes

op rs rt rd funct Register
word operand

base register

op rs rt offset Memory
word or byte operand

op rs rt operand

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

MIPS Instruction Addressing Modes

PC-relative addressing –instruction address is the sum of
the PC and a 16-bit constant contained within the
instruction

Pseudo-direct addressing – instruction address is the 26-bit
constant contained within the instruction concatenated
with the upper 4 bits of the PC

op rs rt offset

Program Counter (PC)

Memory
branch destination instruction

op jump address

Program Counter (PC)

Memory
jump destination instruction|

|

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

MIPS Organization So Far

Processor Memory

32 bits

230

words

read/write
 addr

read data

write data

word address
(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32
32

32

32

5

5

5

PC

ALU

32 32

32
32

32

0 1 2 3
7654

byte address
(big Endian)

Fetch
PC = PC+4

DecodeExec

Add
32

32
4

Add
32

32
branch offset

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

MIPS (RISC) Design Principles

Simplicity favors regularity
fixed size instructions – 32-bits
small number of instruction formats
opcode always the first 6 bits

Good design demands good compromises
three instruction formats

Smaller is faster
limited instruction set
limited number of registers in register file
limited number of addressing modes

Make the common case fast
arithmetic operands from the register file (load-store machine)
allow instructions to contain immediate operands

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Next Lecture

ISA Principles
ISA Evolution
Make sure you’re comfortable with the contents of Ch. 2
You will need to read Appendix B to do the programming
part of the assignment

