
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS352H: Computer Systems Architecture

Lecture 3: Instruction Set Architectures II

September 3, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

ISA is a Contract

Between the programmer and the hardware:
Defines visible state of the system
Defines how the state changes in response to instructions

Programmer obtains a model of how programs will execute
Hardware designer obtains a formal definition of the
correct way to execute instructions
ISA Specification:

Instruction set
How instructions modify the state of the machine
Binary representation

Today:
ISA principles
ISA evolution

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

ISA Specification

Machine state
Memory organization
Register organization

Instruction formats
Instruction types
Addressing modes

Data types
Operations
Interrupts/Events

Instruction
Representation

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Architecture vs. Implementation

Architecture defines what a computer system does in
response to an instruction and data
Architectural components are visible to the programmer

Implementation defines how a computer system does it
Sequence of steps
Time (cycles)
Bookkeeping functions

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Architecture or Implementation?

Number of GP registers
Width of memory word
Width of memory bus
Binary representation of:
add r3, r3, r9

of cycles to execute a FP instruction
Size of the instruction cache
How condition codes are set on an ALU overflow

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Machine State

Registers (size & type)
PC
Accumulators
Index
General purpose
Control

Memory
Visible hierarchy (if any)
Addressability

Bit, byte, word
Endian-ness
Maximum size

Protection

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Components of Instructions

Operations (opcodes)
Number of operands
Operand specifiers (names)

Can be implicit

Instruction classes
ALU
Branch
Memory
…

Instruction encodings

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Number of Operands

None halt
nop

One not R4 R4  ~R4

Two add R1, R2 R1  R1+R2

Three add R1, R2, R3 R1  R2+R3

> three madd R4,R1,R2,R3 R4  R1+(R2*R3)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Effect of Number of Operands

Given
E = (C + D) * (C – D)

And C, D and E in R1, R2 and R3 (resp.)

3 operand machine 2 operand machine
add R3, R1, R2 mov R3, R1
sub R4, R1, R2 add R3, R2
mult R3, R4, R3 sub R2, R1

mult R3, R2

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Evolution of Register Organization

In the beginning…
The accumulator

Two instruction types: op &
store

A  A op M
A  A op *M
*M  A

One address architecture
One memory address per
instruction

Two addressing modes:
Immediate: M
Direct: *M

Inspired by “tabulating”
machines

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

The Index Register

Add indexed addressing mode
A  A op (M+I)
A  A op *(M+I)
*(M+I)  A

Useful for array processing
Addr. of X[0] in instruction
Index value in index register

One register per function:
PC: instructions
I: data addresses
A: data values

Need new instruction to use I
inc I
cmp I

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Example of Effect of Index Register

Without Index Register
Start: CLR i

CLR sum
Loop: LOAD IX

AND #MASK
OR i
STORE IX
LOAD sum

IX: ADD y
STORE sum
LOAD i
ADD #1
STORE i
CMP n
BNE Loop

With Index Register
Start: CLRA

CLRX
Loop: ADDA y(X)

INCX
CMPX n
BNE Loop

Sum = 0;
for (i=0; i<n; i++) sum = sum + y[i];

But what about…

Sum = 0;
for (i=0; i<n; i++)

for (j=0; j<n; j++)
sum = sum + x[j] * y[i];

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

1964: General-Purpose Registers

Merge accumulators (data) &
index registers (addresses)

Simpler
More orthogonal (opcode
independent of register)
More fast local storage
But addresses and data must be
the same size

How many registers?
More: fewer loads
But more instruction bits

IBM 360

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Stack Machines

Register state: PC & SP
All instructions performed on
TOS & SOS
Implied stack Push & Pop

TOS  TOS op SOS
TOS  TOS op M
TOS  TOS op *M

Many instructions are zero
address!
Stack cache for performance

Like a register file
Managed by hardware

Pioneered by Burroughs in
early 60’s
Renaissance due to JVM

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Register-Based ISAs

Why do register-based architectures dominate the market?
Registers are faster than memory
Can “cache” variables

Reduces memory traffic
Improves code density

More efficient use by compiler than other internal storage (stack)
(A*B) – (B*C) – (A*D)

What happened to Register-Memory architectures?
More difficult for compiler
Register-Register architectures more amenable to fast
implementation

General- versus special-purpose registers?
Special-purpose examples in MIPS: PC, Hi, Lo
Compiler wants an egalitarian register society

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Stack Code Examples

push D
push C
mul
push B
add
push J
pushx F
push C
add
add
pop E

Pure stack
(zero addresses)
11 instr, 7 addr

load R1, D
load R2, C
mul R3, R2, R1
load R4, B
add R5, R4, R3
load R6, J
load R7, F(R6)
add R8, R7, R2
add R9, R5, R8
store R9, E

Load/Store Arch
(Several GP registers)
10 instr, 6 addr

A = B + C * D;
E = A + F[J] + C;

push D
mul C
add B
push J
pushx F
add C
add
pop E

One address stack

8 instr, 7 addr

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Memory Organization

ISA specifies five aspects of
memory:

Smallest addressable unit
Maximum addressable units of
memory
Alignment
Endian-ness
Address modes

Little Endian: Intel, DEC

Big Endian: IBM, Motorola

Today: Configurable

Bytes: any address
Half words: even addresses
Words: Multiples of 4

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

Addressing Modes are Driven by Program Usage

double x[100]; // global
void foo(int a) { // argument
 int j; // local
 for (j=0; j<10; j++)
 x[j] = 3 + a*x[j-1];

 bar(a);
}

array reference

constant

procedure

argument

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Addressing Mode Types

#n immediate
(0x1000) absolute (aka direct)
Rn register
(Rn) register indirect
-(Rn) predecrement
(Rn)+ postincrement
*(Rn) memory indirect
*(Rn)+ postincrement indirect
d(Rn) displacement
d(Rn)[Rx] scaled

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

Why Only three Addressing Modes in MIPS?

Studies of code generated for GP computers:
Register mode: ~50%
Immediate + Displacement: 35% - 40%
The Vax had 27 addressing modes!

But special-purpose ISAs make more extensive use of
other modes

Auto-increment in DSP processing

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

How Many Bits for Displacement?

Depends on storage organization & compiler!
DEC Alpha data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

How Many Bits for Immediates?

 Same DEC Alpha study as displacement data
 A study of the Vax (with support for 32-bit immediates) showed that 20% to

25% of immediate values required more than 16 bits

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Data Types

How the contents of memory & registers are interpreted
Can be identified by

Tag
Use

Driven by application:
Signal processing: 16-bit fixed point (fractions)
Text processing: 8-bit characters
Scientific processing: 64-bit floating point

GP computers:
8, 16, 32, 64-bit
Signed & unsigned
Fixed & floating

Symbolics tags

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Example: 32-bit Floating Point

Specifies mapping from bits to real numbers
Format

Sign bit (S)
8-bit exponent (E)
23- bit mantissa (M)

Interpretation
Value = (-1)S * 2(E-127) * 1.M

Operations:
Add, sub, mult, div, sqrt

“Integer” operations can also have fractions
Assume the binary point is just to the right of the leftmost bit
0100 1000 0000 1000 = 2-1 + 2-4 + 2-12 = 0.56274

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

Instruction Types

ALU
Arithmetic (add, sub, mult, …)
Logical (and, or, srl, …)
Data type conversions (cvtf2i, …)
Fused memory/arithmetic

Data movement
Memory reference (lw, sb, …)
Register to register (movi2fp, …)

Control
Test/compare (slt, …)
Branch, jump (beq, j, jr, …)
Procedure call (jal, …)
OS entry (trap)

Complex
String compare, procedure call (with save/restore), …

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

Control Instructions

Implicit
PC  PC + 4

Unconditional jumps
PC  X (direct)
PC  PC + X (PC relative)

X can be a constant or a register

Conditional jumps (branches): > 75% of control instr.
PC  PC + ((cond) ? X : 4)

Procedure call/return
Predicated instructions
Conditions

Flags
In a register
Fused compare and branch

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

Methods for Conditional Jumps

Condition codes
Tests special bits set by ALU

Sometimes this is done for free
CC is extra state constraining instruction order

X86, ARM, PowerPC
Condition register

Tests arbitrary register for result of comparison
Simple
But uses up a register

Alpha, MIPS
Fused compare and branch

Comparison is part of the branch
Single instruction
Complicates pipelining

PA-RISC, VAX, MIPS

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 28

Long Branches

beq $7, $8, Label
What if Label is “far away”?

PC-relative address cannot be encoded in 16 bits

Transform to:
bne $7, $8, NearbyLabel
j FarAwayLabel

NearbyLabel:

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 29

Predication

Branches introduce
discontinuities
If (condition) then

this
else

that
Might translate into

R11  (condition)
beq R11, R0, L1
this
j L2

L1: that
L2:
Forced to wait for “beq”

With predication both this and
that are evaluated but only the
results of the “correct” path are
kept
(condition) this
(not condition) that
Need

Predicated instructions
Predicate registers
Compiler

IA-64
64 1-bit predicate registers
Instructions include extra bits
for predicates

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 30

Exceptions/Events

Implied multi-way branch after
every instruction

External events (interrupts)
I/O completion

Internal events
Arithmetic overflow
Page fault

What happens?
EPC  PC of instruction
causing fault
PC  HW table lookup (based
on fault)
Return to EPC + 4 (sort of)

What about complex “lengthy”
instructions?

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

How many bits for the branch displacement?

Procedure call/return
Should saving and restoring of registers be done automatically?
Vax callp instruction

Control Instructions: Miscellaneous

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

Instruction Formats

Need to specify all kinds of
information

R3  R1 + R2
Jump to address
Return from call

Frequency varies
Instructions
Operand types

Possible encodings:
Fixed length
Few lengths
Byte/bit variable

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

Variable-Length Instructions

More efficient encodings
No unused fields/operands
Can use frequencies when
determining opcode, operand
& address mode encodings

Examples
VAX
Intel x86 (byte variable)
Intel 432 (bit variable)

At a cost of complicating fast
implementation

Where is the next instruction?
Sequential operand location
determination

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 34

Compromise: A Couple of Lengths

Better code density than fixed
length

An issue for embedded
processors

Simpler to decode than
variable-length
Examples:

ARM Thumb
MIPS 16

Another approach
On-the-fly instruction
decompression (IBM
CodePack)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 35

Next Lecture

Finish ISA Principles
A brief look at the IA-32 ISA
RISC vs. CISC
The MIPS ALU
Hwk #1 due

