CS352H: Computer Systems Architecture

Lecture 5: MIPS Integer ALU

September 10, 2009
Integer Addition

Example: 7 + 6

\[\begin{array}{ccccccc}
\text{Carries} & (0) & (0) & (1) & (1) & (0) & \\
\ldots & 0 & 0 & 0 & 1 & 1 & 1 \\
\ldots & 0 & 0 & 0 & 1 & 1 & 0 \\
\ldots & (0) & (0) & (0) & 1 & (1) & 0 & (0) & 1 \\
\end{array} \]

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0
Integer Subtraction

- Add negation of second operand
- Example: $7 - 6 = 7 + (-6)$

 +7: 0000 0000 ... 0000 0111

 -6: 1111 1111 ... 1111 1010

 +1: 0000 0000 ... 0000 0001

- Overflow if result out of range

 - Subtracting two +ve or two –ve operands, no overflow

 - Subtracting +ve from –ve operand

 - Overflow if result sign is 0

 - Subtracting –ve from +ve operand

 - Overflow if result sign is 1
Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS `addu`, `addui`, `subu` instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS `add`, `addi`, `sub` instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - `mfc0` (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action
Using c_i for CarryIn_i

\[
c_2 = b_1c_1 + a_1c_1 + a_1b_1
\]

and

\[
c_1 = b_0c_0 + a_0c_0 + a_0b_0
\]

Substituting for c_1, we get:

\[
c_2 = a_1a_0b_0 + a_1a_0c_0 + a_1b_0c_0 + b_1a_0b_0 + b_1a_0c_0 + b_1b_0c_0 + a_1b_1
\]

Continuing this to 32 bits yields a fast, but unreasonably expensive adder

Just how fast?

Assume all gate delays are the same regardless of fan-in
Carry-Lookahead Adders

- The basic formula can be rewritten:
 - $c_{i+1} = b_i c_i + a_i c_i + a_i b_i$
 - $c_{i+1} = a_i b_i + (a_i + b_i)c_i$

- Applying it to c_2, we get:
 - $c_2 = a_1 b_1 + (a_1 + b_1)(a_0 b_0 + (a_0 + b_0)c_0)$

- Define two “signals” or abstractions:
 - Generate: $g_i = a_i \times b_i$
 - Propagate: $p_i = a_i + b_i$

- Redefine c_{i+1} as:
 - $c_{i+1} = g_i + p_i \times c_i$

- So $c_{i+1} = 1$ if
 - $g_i = 1$ (generate) or
 - $p_i = 1$ and $c_i = 1$ (propagate)
Carry-Lookahead Adders

- Our logic equations are simpler:
 - \(c_1 = g_0 + p_0c_0 \)
 - \(c_2 = g_1 + p_1g_0 + p_1p_0c_0 \)
 - \(c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0 \)
 - \(c_4 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0 + p_3p_2p_1p_0c_0 \)
Carry-Lookahead Adders

\[a_i \quad b_i \quad c_{i+1} \]

0 0 0 kill
0 1 c_i propagate
1 0 c_i propagate
1 1 1 generate

\[
c_0 = g_0 + p_0 c_0
\]

\[
c_1 = g_1 + p_1 g_0 + p_1 p_0 c_0
\]

\[
c_2 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0
\]

\[
c_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0
\]
Carry-Lookahead Adders

- How much better (16-bit adder)?
 - Ripple-carry: \(16 \times T_{\text{add}} = 16 \times 2 = 32\) gate delays
 - Carry-lookahead: \(T_{\text{add}} + \max (p_i, g_i) = 2 + 2 = 4\)
 - Much better, but still too profligate

- What if we apply another level of this abstraction?
 - Use the four-bit adder on the previous slide as a building block
 - Define \(P\) and \(G\) signals
 - \(P_0 = p_3p_2p_1p_0\)
 - \(G_0 = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0\)
 - Similarly for \(P_1 - P_3\) and \(G_1 - G_3\)
 - Derive equations for \(C_1 - C_4\)
 - \(C_1 = G_0 + P_0c_0\)
 - \(C_2 = G_1 + P_1G_0 + P_1P_0c_0\), etc.
 - See discussion in Appendix C.6
Carry-Lookahead Adders

16-bit adder performance = $T_{\text{add}} + \max (P_i, G_i) = 2 + 2 + 1 = 5$
(with thrifty hardware)
Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video
Shifters

- Two kinds:
 - Logical: value shifted in is always “0”

 ![Logical Shift Diagram]

- Arithmetic: sign-extend on right shifts

 ![Arithmetic Shift Diagram]

- What about n-bit, rather than 1-bit, shifts?

 Want a fast shifter
Combinatorial Shifter from MUXes

Basic Building Block

\[
\text{sel} \quad 1 \quad 0 \\
A \quad B \\
D
\]

- What comes in the MSBs?
- How many levels for 32-bit shifter?
- What if we use 4-1 Muxes?

8-bit right shifter

\[
\begin{array}{ccccccccc}
A_7 & A_6 & A_5 & A_4 & A_3 & A_2 & A_1 & A_0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
R_7 & R_6 & R_5 & R_4 & R_3 & R_2 & R_1 & R_0 \\
S_2 & S_1 & S_0
\end{array}
\]
Unsigned Multiplication

Paper and pencil example (unsigned):

<table>
<thead>
<tr>
<th>Multiplicand</th>
<th>1 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td></td>
<td>1 0 0 0</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>1 0 0 0</td>
</tr>
<tr>
<td></td>
<td>0 1 0 0 1 0 0 0</td>
</tr>
</tbody>
</table>

- m bits $\times n$ bits = $m+n$ bit product
- Binary makes it easy:
 - 0: place 0
 - (0 x multiplicand)
 - 1: place copy
 - (1 x multiplicand)
Unsigned Combinatorial Multiplier

Stage i accumulates $A \times 2^i$ if $B_i = 1$
How Does it Work?

- At each stage shift A left (x2)
- Use next bit of B to determine whether to add in shifted multiplicand
- Accumulate 2n bit partial product at each stage
Sequential Multiplication Hardware

Initially 0

1. Test Multiplier0
 - Multiplier0 = 1
 1a. Add multiplicand to product and place the result in Product register
 - Multiplier0 = 0

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?
 - No: < 32 repetitions
 - Yes: 32 repetitions

Done

Multiply

Shift left

64 bits

64-bit ALU

Product

Write

Control test

Initially 0

Multiplier

Shift right

32 bits
Observations

- One clock per multiply cycle
 - ~32 clock cycles per integer multiply
 - Vs. one cycle for an add/subtract
- Half of the bits in the multiplicand are always zero
 - 64-bit adder is wasted
- Zeros inserted in left of multiplicand as shifted
 - Least significant bits of product unchanged once formed

- Instead of shifting multiplicand to left, shift product to right!
Optimized Multiplier

- Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That’s ok, if frequency of multiplications is low
Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel
MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits

- Instructions
 - `mult rs, rt / multu rs, rt`
 - 64-bit product in HI/LO
 - `mfhi rd / mflo rd`
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - `mul rd, rs, rt`
 - Least-significant 32 bits of product --> rd
Division

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

n-bit operands yield n-bit quotient and remainder
Division Hardware

1. Subtract the Divisor register from the Remainder register and place the result in the Remainder register

2. Test Remainder
 - If Remainder ≥ 0, proceed with the next step
 - If Remainder < 0, shift the Divisor register to the left, setting the new rightmost bit to 1

3. Shift the Divisor register right 1 bit

No: < 33 repetitions
 - Shift right 64 bits
 - 64-bit ALU
 - Write 64 bits
 - Control test
 - Quotient Shift left 32 bits

Yes: 33 repetitions
 - Done

Initially divisor in left half

Initially dividend
Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both
Faster Division

- Can’t use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step
 - Still require multiple steps
MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient

- Instructions
 - `div rs, rt` / `divu rs, rt`
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use `mfhi`, `mflo` to access result
Next Lecture

- Floating point
 - Rest of Chapter 3