
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS352H: Computer Systems Architecture

Lecture 5: MIPS Integer ALU

September 10, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Integer Addition

Example: 7 + 6

Overflow if result out of range
Adding +ve and –ve operands, no overflow
Adding two +ve operands

Overflow if result sign is 1
Adding two –ve operands

Overflow if result sign is 0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

Integer Subtraction

Add negation of second operand
Example: 7 – 6 = 7 + (–6)

+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

Overflow if result out of range
Subtracting two +ve or two –ve operands, no overflow
Subtracting +ve from –ve operand

Overflow if result sign is 0

Subtracting –ve from +ve operand
Overflow if result sign is 1

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Dealing with Overflow

Some languages (e.g., C) ignore overflow
Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran) require raising an
exception

Use MIPS add, addi, sub instructions
On overflow, invoke exception handler

Save PC in exception program counter (EPC) register
Jump to predefined handler address
mfc0 (move from coprocessor reg) instruction can retrieve EPC
value, to return after corrective action

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Throw Hardware At It: Money is no Object!

Using ci for CarryIni
c2 = b1c1 + a1c1 + a1b1

and
c1 = b0 c0 + a0 c0 + a0b0

Substituting for c1, we get:
c2 = a1a0b0 + a1a0c0 + a1b0c0 + b1a0b0 + b1a0c0 + b1b0c0 + a1b1

Continuing this to 32 bits yields a fast, but unreasonably
expensive adder

Just how fast?
Assume all gate delays are the same regardless of fan-in

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Carry-Lookahead Adders

The basic formula can be rewritten:
ci+1 = bici + aici + aibi

ci+1 = aibi + (ai + bi)ci

Applying it to c2, we get:
c2 = a1b1 + (a1 + b1)(a0b0 + (a0 + b0)c0)

Define two “signals” or abstractions:
Generate: gi = ai * bi

Propagate: pi = ai + bi

Redefine ci+1 as:
ci+1 = gi + pi * ci

So ci+1 = 1 if
gi = 1 (generate) or
pi = 1 and ci = 1 (propagate)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Carry-Lookahead Adders

Our logic equations are simpler:
c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Carry-Lookahead Adders

a0
b0

s0
g0 p0

a1
b1

s1
g1 p1

a2
b2

s2
g2 p2

a3
b3

s3
g3 p3

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = …

c0 ai bi ci+1
0 0 0 kill
0 1 ci propagate
1 0 ci propagate
1 1 1 generate

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Carry-Lookahead Adders

How much better (16-bit adder)?
Ripple-carry: 16 * Tadd = 16 * 2 = 32 gate delays
Carry-lookahead: Tadd + max (pi, gi) = 2 + 2 = 4
Much better, but still too profligate

What if we apply another level of this abstraction?
Use the four-bit adder on the previous slide as a building block
Define P and G signals

P0 = p3p2p1p0

G0 = g3 + p3g2 + p3p2g1 + p3p2p1g0

Similarly for P1 – P3 and G1 – G3

Derive equations for C1 – C4

C1 = G0 + P0 c0

C2 = G1 + P1G0 + P1P0c0, etc.
See discussion in Appendix C.6

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Carry-Lookahead Adders

16-bit adder performance = Tadd + max (Pi, Gi) = 2 + 2 + 1 = 5
(with thrifty hardware)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Arithmetic for Multimedia

Graphics and media processing operates on vectors of 8-bit
and 16-bit data

Use 64-bit adder, with partitioned carry chain
Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

SIMD (single-instruction, multiple-data)

Saturating operations
On overflow, result is largest representable value

c.f. 2s-complement modulo arithmetic
E.g., clipping in audio, saturation in video

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Shifters

Two kinds:
Logical: value shifted in is always “0”

Arithmetic: sign-extend on right shifts

What about n-bit, rather than 1-bit, shifts?
Want a fast shifter

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Combinatorial Shifter from MUXes

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

Unsigned Multiplication

Paper and pencil example (unsigned):
Multiplicand 1 0 0 0
Multiplier 1 0 0 1

 1 0 0 0
 0 0 0 0
 0 0 0 0
 1 0 0 0
 0 1 0 0 1 0 0 0

m bits x n bits = m+n bit product
Binary makes it easy:

0: place 0 (0 x multiplicand)
1: place copy (1 x multiplicand)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Unsigned Combinatorial Multiplier

Stage i accumulates A * 2i if Bi == 1

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

How Does it Work?

At each stage shift A left (x2)
Use next bit of B to determine whether to add in shifted multiplicand
Accumulate 2n bit partial product at each stage

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Sequential Multiplication Hardware

Initially 0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

Observations

One clock per multiply cycle
~32 clock cycles per integer multiply
Vs. one cycle for an add/subtract

Half of the bits in the multiplicand are always zero
64-bit adder is wasted

Zeros inserted in left of multiplicand as shifted
Least significant bits of product unchanged once formed

Instead of shifting multiplicand to left, shift product to
right!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition
That’s ok, if frequency of multiplications is low

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

Faster Multiplier

Uses multiple adders
Cost/performance tradeoff

Can be pipelined
Several multiplication performed in parallel

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

MIPS Multiplication

Two 32-bit registers for product
HI: most-significant 32 bits
LO: least-significant 32-bits

Instructions
mult rs, rt / multu rs, rt

64-bit product in HI/LO

mfhi rd / mflo rd
Move from HI/LO to rd
Can test HI value to see if product overflows 32 bits

mul rd, rs, rt
Least-significant 32 bits of product –> rd

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

Division

Check for 0 divisor
Long division approach

If divisor ≤ dividend bits
1 bit in quotient, subtract

Otherwise
0 bit in quotient, bring down next dividend bit

Restoring division
Do the subtract, and if remainder goes < 0, add divisor
back

Signed division
Divide using absolute values
Adjust sign of quotient and remainder as required

 1001
1000 1001010
 -1000
 10
 101
 1010
 -1000
 10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Division Hardware

Initially dividend

Initially divisor
in left half

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Optimized Divider

One cycle per partial-remainder subtraction
Looks a lot like a multiplier!

Same hardware can be used for both

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

Faster Division

Can’t use parallel hardware as in multiplier
Subtraction is conditional on sign of remainder

Faster dividers (e.g. SRT devision) generate multiple
quotient bits per step

Still require multiple steps

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

MIPS Division

Use HI/LO registers for result
HI: 32-bit remainder
LO: 32-bit quotient

Instructions
div rs, rt / divu rs, rt
No overflow or divide-by-0 checking

Software must perform checks if required
Use mfhi, mflo to access result

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

Next Lecture

Floating point
Rest of Chapter 3

