CS352H: Computer Systems Architecture

Lecture 5: MIPS Integer ALU

September 10, 2009

o EEEEESSRRE

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Integer Addition

® Example: 7+ 6

aanar

... (0) 0 (0)0 01 (1)1 (1)

® Overflow if result out of range
® Adding +ve and —ve operands, no overflow
B Adding two +ve operands
® Overflow if result sign is 1
® Adding two —ve operands

® Overflow if result sign is 0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Integer Subtraction

B Add negation of second operand
® Example: 7-6=7+(-6)
+7: 0000 0000 ... 00000111

—6: 1111 1111 ... 11111010
+1: 0000 0000 ... 0000 0001

® QOverflow if result out of range
Subtracting two +ve or two —ve operands, no overflow

Subtracting +ve from —ve operand
m Overflow if result sign is 0

Subtracting —ve from +ve operand
m Overflow if result sign is 1

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

Dealing with Overtlow

B Some languages (e.g., C) ignore overflow
= Use MIPS addu, addui, subu instructions

®m Other languages (e.g., Ada, Fortran) require raising an
exception
= Use MIPS add, addi, sub instructions

® On overflow, invoke exception handler
® Save PC in exception program counter (EPC) register
® Jump to predefined handler address

®m mfcO (move from coprocessor reg) instruction can retrieve EPC
value, to return after corrective action

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Throw Hardware At It: Money 1s no Object!

Using c; for Carryln,
¢, =bc, tac, +ab,
and

¢, =bycy +a,c, + agb,

Substituting for ¢,, we get:

C, = a,a,b, +aja,c, +a;byc, +bagb, +bjayc, +bbic, +ab,

Continuing this to 32 bits yields a fast, but unreasonably
expensive adder

Just how fast?

Assume all gate delays are the same regardless of fan-in

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Carry-l.ookahead Adders

® The basic formula can be rewritten:
B ¢ =D tac; +apb
= ¢,y =ab; +(a;+ byg
® Applying it to c,, we get:
W c,=a;b, +(a;+ b)(ayby + (3t by)cy)
® Define two “signals” or abstractions:
® Generate: g, =a, * b,
® Propagate: p, =a, + b,
®m Redefine ¢, as:
mc,=gtp *c¢
mSoc,, =1i1f
m g = | (generate) or
® p.=1andc, = 1 (propagate)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Carry-l.ookahead Adders

= Our logic equations are simpler:
B C; =gy T PoCo
B C, =g T P18 T PiPoC
C3 = g, T P81 T PaP18o T P2P1PoCo
C4 = 83 T P3&> T P3P281 T P3P2P 180 T P3P2P1P0Co

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

l oo l a; by ¢,
O O O Kill
'go:: — So 9 N 0 1 ¢ propagate
0 Po—> 1 0 ¢ propagate

i C; = Gg + PyCy 1 1 1 generate
a;,—» —> S
b, —» 91 p1_:

l C, =094+ P49g T P1PCo
a, —» —>S;
b, — 92 p2_:

i C3 = Jy * P29¢ * P2P19g * P2P1PoCo
d;—» —>S3
b, —» 93 p3_:

Cy= ...

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Carry-l.ookahead Adders

® How much better (16-bit adder)?
® Ripple-carry: 16 * T, = 16 * 2 = 32 gate delays
® Carry-lookahead: T, ,; + max (p, g)=2+2=4
B Much better, but still too profligate

® What if we apply another level of this abstraction?
® Use the four-bit adder on the previous slide as a building block
® Define P and G signals

® Py = p;p,pPy

B G, =g;+P;g + P3P T P3PaPig
® Similarly for P, — P; and G, — G,
® Derive equations for C, — C,
mC, =G, tP,c,
mC, =G, +P,G,+ PPy, etc.
®m See discussion in Appendix C.6

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Carry-l.ookahead Adders

Jm
=
=
= L
o - [- T
& T -+ b =
= = = E
= = = = =
7 g 8 g i
o = (g o o
T
1 3 i L .
— — o [t (o] [B 2] =t
) + + + + + + + + o+ +
S O 8 o O 8o O am O
- I 1 & A
— od o -t
o (&7 (&1 5] g
L
]
= = = e = - = e B = £ €2 &)
= = o o = - o = o0 = o
= = S+ @ = 5%0 = 580 = = Rl
% = = = = = = T =
2 2 L] =]
rrereer frrrreer ety rrrt
L=] o0 = L B Moas Ras]
IBECVNRE IIVBEBRE BBIBIZEE 0 DooIew

16-bit adder performance =T_,,+ max (P,, G)=2+2+1=5
(with thrifty hardware)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Arithmetic for Multimedia

B Graphics and media processing operates on vectors of 8-bit

and 16-bit data

®m Use 64-bit adder, with partitioned carry chain
= Operate on 8%8-bit, 4x16-bit, or 2x32-bit vectors
® SIMD (single-instruction, multiple-data)
= Saturating operations

® On overflow, result 1s largest representable value

m c.f. 2s-complement modulo arithmetic

m E.g., clipping in audio, saturation in video

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

11

Shifters

® Two kinds:

® [ogical: value shifted in 1s always “0”

Ilul'_.. msb

Isb ,‘_llnl'l

B Arithmetic: sign-extend on right shifts

—* | msh

Ish

' "D"

B What about n-bit, rather than 1-bit, shifts?

Want a fast shifter

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

12

Combinatorial Shifter from MU Xes

S 51 S

+ What comes in the MSBs?
Basic Building Block A B
sel [T 0 * How many levels for 32-bit shifter?
b » What if we use 4-1 Muxes ?
$-bit right shifter A- A Ag A, A, A A Ay
B e o s T e
oo opr offr ofr opfjl of|l oL 0]«
e e e e . W e S ¥
ool opff offf offf opfl offl oL 0]
S . R W
oot opr offr offr opfl offr oL O0fe—

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

13

Unsigned Multiplication

B Paper and pencil example (unsigned):
® Multiplicand 1000
® Multiplier 1001
1000

0000
0000

1000

01001000

B m bits x n bits = m+n bit product

® Binary makes it easy:
m (: place 0 (0 x multiplicand)
m |: place copy (1 x multiplicand)

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

14

Unsigned Combinatorial Multiplier

A, I/AZ A, Ay N B
. I 1 1r i '
Ay Iiz A | A
[I 1 1 71771 .
A | A | A | A B
[T 1T T 71717 "1 """ ’
P r P

Stage i accumulates A * 2! if B, ==

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

A A A
; “~ 78,
___,..-"'
AL A A A
S O S) IR I IR IR [A
e
AL A A, AL N I
i T 1 1 JEf e+ -- 5
o
IR
P. P, P. P, P, P, P, P,

B At each stage shift A left (x2)
m Use next bit of B to determine whether to add in shifted multiplicand
B Accumulate 2n bit partial product at each stage

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Y —

Multiplier0 = 1 Multiplier0 = 0 Multiplicand

1. Test

Multiplier0 Shift left |-e—

{ 64 bits
1a. Add multiplicand to product and v
place the result in Product register \/ — >
| ‘ Multiplier
64-bit ALU Shift right
\ Y
|2. Shift the Multiplicand register left 1 bitl 32 bits
Y
| 3. Shift the Multiplier register right 1 bit | PrOdUCt Contro| test
Write
64 bits
No: < 32 repetitions

Yes: 32 repetitions

Initially O

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Observations

® One clock per multiply cycle
m ~32 clock cycles per integer multiply
® Vs. one cycle for an add/subtract

= Half of the bits in the multiplicand are always zero
= 64-bit adder 1s wasted

m Zeros inserted in left of multiplicand as shifted

m [east significant bits of product unchanged once formed

® [nstead of shifting multiplicand to left, shift product to
right!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

18

Optimized Multiplier

® Perform steps in parallel: add/shift

Multiplicand

ﬁ 132 bits
\/

32-bit ALU

_>

Product Shift rlght
Write

64 bits

® One cycle per partial-product addition

® That’s ok, if frequency of multiplications 1s low

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

Faster Multiplier

®m Uses multiple adders

®m Cost/performance tradeoff

Mplier31 ¢ Mcand Mplier30 » Mcand Mplier29 « Mcand Mplier28 » Mcand Mplier3 « Mcand Mplier2 ¢ Mcand Mplier1 « Mcand Mplier0 « Mcand

| T lll,,

A

4
N

N

A
N
32 bits

Product63 Product62 g Product47..16 A Product1 ProductO

\
\

1 bit + 1 bit 1bit-— 1 bit+

® Can be pipelined

m Several multiplication performed in parallel

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

20

PS Multiplication

B Two 32-bit registers for product
® HI: most-significant 32 bits
® LO: least-significant 32-bits

® [nstructions
B multrs, rt / multurs, rt
& 64-bit product in HI/LO
mfhird / mflo rd

® Move from HI/LO to rd
m Can test HI value to see if product overflows 32 bits

mul rd, rs, rt
m Least-significant 32 bits of product — rd

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

Division
® Check for 0 divisor
® Long division approach
quotient ® If divisor < dividend bits
= | bit in quotient, subtract
dividend = Otherwise
1 1 = (0 bit in quotient, bring down next dividend bit
® Restoring division
1000 j 001010 ® Do the subtract, and if remainder goes < 0, add divisor
s~ -1000 back
VISOT 10 ®m Signed division
® Divide using absolute values
101
B Adjust sign of quotient and remainder as required
1010
-1000
remainder | — 10—

n-bit operands yield n-bit
quotient and remainder

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

22

uoIsIAq #°'€§

Division Hardware

(Start)

Y Initially divisor
1. Subtract the Divisor register from the .
Remainder register and place the In Ieft half

result in the Remainder register

—_—
Divisor
Remainder = 0 Remainder < 0 Shift right <
Test Remainder
64 bits
\ \/
2a. Shift the Quotient register to the left, 2b. Restore the original value by adding \/ /
setting the new rightmost bit to 1 the Divisor register to the Remainder < Quotient

register and placing the sum in the 64-bit ALU h Shift left

Remainder register. Also shift the -
Quotient register to the left, setting the v 32 bits
new least significant bit to O
] Remainder Control
Write test
64 bits
3. Shift the Divisor register right 1 bit |
No: < 33 repetitions
33rd repetition? iy o
Initially dividend

Yes: 33 repetitions

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

Optimized Divider

Divisor

ﬁ 132 bits
\/

32-bit ALU

P

Shift right
Remainder Shift left
Write

64 bits

B One cycle per partial-remainder subtraction
® Looks a lot like a multiplier!

m Same hardware can be used for both

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Faster Division

®m Can’t use parallel hardware as in multiplier

® Subtraction is conditional on sign of remainder

m Faster dividers (e.g. SRT devision) generate multiple
quotient bits per step

= Still require multiple steps

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

PS Division

® Use HI/LO registers for result
®m HI: 32-bit remainder
® [LO: 32-bit quotient

= Instructions

mdivrs, rt / divurs, rt
® No overflow or divide-by-0 checking

® Software must perform checks if required
m Use mfhi, mflo to access result

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

Next Lecture

® Floating point
®m Rest of Chapter 3

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

