
University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

CS352H: Computer Systems Architecture

Lecture 6: MIPS Floating Point

September 17, 2009

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Floating Point

Representation for dynamically rescalable numbers
Including very small and very large numbers, non-integers

Like scientific notation
–2.34 × 1056

+0.002 × 10–4

+987.02 × 109

In binary
±1.xxxxxxx2 × 2yyyy

Types float and double in C

normalized

not normalized

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

Portability issues for scientific code

Now almost universally adopted
Two representations

Single precision (32-bit)
Double precision (64-bit)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

IEEE Floating-Point Format

S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
Normalize significand: 1.0 ≤ |significand| < 2.0

Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly
(hidden bit)
Significand is Fraction with the “1.” restored

Exponent: excess representation: actual exponent + Bias
Ensures exponent is unsigned
Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x !
"+"!=

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Single-Precision Range

Exponents 00000000 and 11111111 reserved
Smallest value

Exponent: 00000001
⇒ actual exponent = 1 – 127 = –126
Fraction: 000…00 ⇒ significand = 1.0
±1.0 × 2–126 ≈ ±1.2 × 10–38

Largest value
exponent: 11111110
⇒ actual exponent = 254 – 127 = +127
Fraction: 111…11 ⇒ significand ≈ 2.0
±2.0 × 2+127 ≈ ±3.4 × 10+38

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Double-Precision Range

Exponents 0000…00 and 1111…11 reserved
Smallest value

Exponent: 00000000001
⇒ actual exponent = 1 – 1023 = –1022
Fraction: 000…00 ⇒ significand = 1.0
±1.0 × 2–1022 ≈ ±2.2 × 10–308

Largest value
Exponent: 11111111110
⇒ actual exponent = 2046 – 1023 = +1023
Fraction: 111…11 ⇒ significand ≈ 2.0
±2.0 × 2+1023 ≈ ±1.8 × 10+308

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Floating-Point Precision

Relative precision
all fraction bits are significant
Single: approx 2–23

Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
Double: approx 2–52

Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Floating-Point Example

Represent –0.75
–0.75 = (–1)1 × 1.12 × 2–1

S = 1
Fraction = 1000…002

Exponent = –1 + Bias
Single: –1 + 127 = 126 = 011111102

Double: –1 + 1023 = 1022 = 011111111102

Single: 1011111101000…00
Double: 1011111111101000…00

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Floating-Point Example

What number is represented by the single-precision float
11000000101000…00

S = 1
Fraction = 01000…002

Fxponent = 100000012 = 129
x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Denormal Numbers

Exponent = 000...0 ⇒ hidden bit is 0

Smaller than normal numbers
allow for gradual underflow, with diminishing precision

Denormal with fraction = 000...0

Two representations
of 0.0!

BiasS 2Fraction)(01)(x !
"+"!=

0.0±=!+!"=
"BiasS 20)(01)(x

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Infinities and NaNs

Exponent = 111...1, Fraction = 000...0
±Infinity
Can be used in subsequent calculations, avoiding need for
overflow check

Exponent = 111...1, Fraction ≠ 000...0
Not-a-Number (NaN)
Indicates illegal or undefined result

e.g., 0.0 / 0.0
Can be used in subsequent calculations

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Floating-Point Addition

Consider a 4-digit decimal example
9.999 × 101 + 1.610 × 10–1

1. Align decimal points
Shift number with smaller exponent
9.999 × 101 + 0.016 × 101

2. Add significands
9.999 × 101 + 0.016 × 101 = 10.015 × 101

3. Normalize result & check for over/underflow
1.0015 × 102

4. Round and renormalize if necessary
1.002 × 102

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

Floating-Point Addition

Now consider a 4-digit binary example
1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

1. Align binary points
Shift number with smaller exponent
1.0002 × 2–1 + –0.1112 × 2–1

2. Add significands
1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

3. Normalize result & check for over/underflow
1.0002 × 2–4, with no over/underflow

4. Round and renormalize if necessary
1.0002 × 2–4 (no change) = 0.0625

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

FP Adder Hardware

Much more complex than integer adder
Doing it in one clock cycle would take too long

Much longer than integer operations
Slower clock would penalize all instructions

FP adder usually takes several cycles
Can be pipelined

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Floating-Point Multiplication

Consider a 4-digit decimal example
1.110 × 1010 × 9.200 × 10–5

1. Add exponents
For biased exponents, subtract bias from sum
New exponent = 10 + –5 = 5

2. Multiply significands
1.110 × 9.200 = 10.212 ⇒ 10.212 × 105

3. Normalize result & check for over/underflow
1.0212 × 106

4. Round and renormalize if necessary
1.021 × 106

5. Determine sign of result from signs of operands
+1.021 × 106

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 17

Floating-Point Multiplication

Now consider a 4-digit binary example
1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)

1. Add exponents
Unbiased: –1 + –2 = –3
Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

2. Multiply significands
1.0002 × 1.1102 = 1.1102 ⇒ 1.1102 × 2–3

3. Normalize result & check for over/underflow
1.1102 × 2–3 (no change) with no over/underflow

4. Round and renormalize if necessary
1.1102 × 2–3 (no change)

5. Determine sign: +ve × –ve ⇒ –ve
–1.1102 × 2–3 = –0.21875

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 18

FP Arithmetic Hardware

FP multiplier is of similar complexity to FP adder
But uses a multiplier for significands instead of an adder

FP arithmetic hardware usually does
Addition, subtraction, multiplication, division, reciprocal, square-
root
FP ↔ integer conversion

Operations usually takes several cycles
Can be pipelined

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

FP Instructions in MIPS

FP hardware is coprocessor 1
Adjunct processor that extends the ISA

Separate FP registers
32 single-precision: $f0, $f1, … $f31
Paired for double-precision: $f0/$f1, $f2/$f3, …

Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s
FP instructions operate only on FP registers

Programs generally don’t do integer ops on FP data, or vice versa
More registers with minimal code-size impact

FP load and store instructions
lwc1, ldc1, swc1, sdc1

e.g., ldc1 $f8, 32($sp)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

FP Instructions in MIPS

Single-precision arithmetic
add.s, sub.s, mul.s, div.s

e.g., add.s $f0, $f1, $f6
Double-precision arithmetic

add.d, sub.d, mul.d, div.d
e.g., mul.d $f4, $f4, $f6

Single- and double-precision comparison
c.xx.s, c.xx.d (xx is eq, lt, le, …)
Sets or clears FP condition-code bit

e.g. c.lt.s $f3, $f4
Branch on FP condition code true or false

bc1t, bc1f
e.g., bc1t TargetLabel

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

FP Example: °F to °C

C code:
float f2c (float fahr) {
 return ((5.0/9.0)*(fahr - 32.0));
}

fahr in $f12, result in $f0, literals in global memory space
Compiled MIPS code:
f2c: lwc1 $f16, const5($gp)
 lwc2 $f18, const9($gp)
 div.s $f16, $f16, $f18
 lwc1 $f18, const32($gp)
 sub.s $f18, $f12, $f18
 mul.s $f0, $f16, $f18
 jr $ra

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

FP Example: Array Multiplication

X = X + Y × Z
All 32 × 32 matrices, 64-bit double-precision elements

C code:
void mm (double x[][],
 double y[][], double z[][]) {
 int i, j, k;
 for (i = 0; i! = 32; i = i + 1)
 for (j = 0; j! = 32; j = j + 1)
 for (k = 0; k! = 32; k = k + 1)
 x[i][j] = x[i][j]
 + y[i][k] * z[k][j];
}

Addresses of x, y, z in $a0, $a1, $a2, and
i, j, k in $s0, $s1, $s2

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

FP Example: Array Multiplication

MIPS code:
 li $t1, 32 # $t1 = 32 (row size/loop end)
 li $s0, 0 # i = 0; initialize 1st for loop
L1: li $s1, 0 # j = 0; restart 2nd for loop
L2: li $s2, 0 # k = 0; restart 3rd for loop
 sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)
 addu $t2, $t2, $s1 # $t2 = i * size(row) + j
 sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
 addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]
 l.d $f4, 0($t2) # $f4 = 8 bytes of x[i][j]
L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
 addu $t0, $t0, $s1 # $t0 = k * size(row) + j
 sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
 addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]
 l.d $f16, 0($t0) # $f16 = 8 bytes of z[k][j]
 …

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

FP Example: Array Multiplication

 …
 sll $t0, $s0, 5 # $t0 = i*32 (size of row of y)
 addu $t0, $t0, $s2 # $t0 = i*size(row) + k
 sll $t0, $t0, 3 # $t0 = byte offset of [i][k]
 addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]
 l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]
 mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]
 add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j]
 addiu $s2, $s2, 1 # $k k + 1
 bne $s2, $t1, L3 # if (k != 32) go to L3
 s.d $f4, 0($t2) # x[i][j] = $f4
 addiu $s1, $s1, 1 # $j = j + 1
 bne $s1, $t1, L2 # if (j != 32) go to L2
 addiu $s0, $s0, 1 # $i = i + 1
 bne $s0, $t1, L1 # if (i != 32) go to L1

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 25

Accurate Arithmetic

IEEE Std 754 specifies additional rounding control
Extra bits of precision (guard, round, sticky)
Choice of rounding modes
Allows programmer to fine-tune numerical behavior of a computation

Not all FP units implement all options
Most programming languages and FP libraries just use defaults

Trade-off between hardware complexity, performance, and market
requirements

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

Interpretation of Data

Bits have no inherent meaning
Interpretation depends on the instructions applied

Computer representations of numbers
Finite range and precision
Need to account for this in programs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

Associativity

Parallel programs may interleave operations in unexpected
orders

Assumptions of associativity may fail

(x+y)+z x+(y+z)

x -1.50E+38 -1.50E+38

y 1.50E+38

z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00

1.50E+38

Need to validate parallel programs under varying degrees of
parallelism

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 28

x86 FP Architecture

Originally based on 8087 FP coprocessor
8 × 80-bit extended-precision registers
Used as a push-down stack
Registers indexed from TOS: ST(0), ST(1), …

FP values are 32-bit or 64 in memory
Converted on load/store of memory operand
Integer operands can also be converted
on load/store

Very difficult to generate and optimize code
Result: poor FP performance

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 29

x86 FP Instructions

Optional variations
I: integer operand
P: pop operand from stack
R: reverse operand order
But not all combinations allowed

FPATAN
F2XMI
FCOS
FPTAN
FPREM
FPSIN
FYL2X

FICOMP
FIUCOMP
FSTSW AX/mem

FIADDP mem/ST(i)
FISUBRP mem/ST(i) FIMULP
mem/ST(i) FIDIVRP mem/ST(i)
FSQRT
FABS
FRNDINT

FILD mem/ST(i)
FISTP mem/ST(i)
FLDPI
FLD1
FLDZ

TranscendentalCompareArithmeticData transfer

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 30

Streaming SIMD Extension 2 (SSE2)

Adds 4 × 128-bit registers
Extended to 8 registers in AMD64/EM64T

Can be used for multiple FP operands
2 × 64-bit double precision
4 × 32-bit double precision
Instructions operate on them simultaneously

Single-Instruction Multiple-Data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

Right Shift and Division

Left shift by i places multiplies an integer by 2i

Right shift divides by 2i?
Only for unsigned integers

For signed integers
Arithmetic right shift: replicate the sign bit
e.g., –5 / 4

111110112 >> 2 = 111111102 = –2
Rounds toward –∞

c.f. 111110112 >>> 2 = 001111102 = +62

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

Who Cares About FP Accuracy?

Important for scientific code
But for everyday consumer use?

“My bank balance is out by 0.0002¢!” 

The Intel Pentium FDIV bug
The market expects accuracy
See Colwell, The Pentium Chronicles

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

Concluding Remarks

ISAs support arithmetic
Signed and unsigned integers
Floating-point approximation to reals

Bounded range and precision
Operations can overflow and underflow

MIPS ISA
Core instructions: 54 most frequently used

100% of SPECINT, 97% of SPECFP
Other instructions: less frequent

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 34

Next Lecture

Performance evaluation
Micro-architecture introduction

Chapter 4.1 – 4.4

