CS352H: Computer Systems Architecture

Lecture 6: MIPS Floating Point

September 17, 2009

o EEEEESSRRE

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

Floating Point

®m Representation for dynamically rescalable numbers

® Including very small and very large numbers, non-integers

m [ike scientific notation
B —2.34 x 10°°

= +0.002 x 104 b normalized
m +987.02 x 10° —
. not normalized
® In binary _

B] ooooooc, X 29

® Types float and double in C

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 2

Floating Point Standard

® Defined by IEEE Std 754-1985
®m Developed 1n response to divergence of representations

® Portability 1ssues for scientific code
® Now almost universally adopted

® Two representations
® Single precision (32-bit)
® Double precision (64-bit)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 3

IEEE Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

®m S:sign bit (0 = non-negative, 1 = negative)
® Normalize significand: 1.0 < [significand| < 2.0

® Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly
(hidden bit)

® Significand is Fraction with the “1.” restored
® Exponent: excess representation: actual exponent + Bias

® Ensures exponent is unsigned
® Single: Bias = 127; Double: Bias = 1203

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 4

Single-Precision Range

= Exponents 00000000 and 11111111 reserved

B Smallest value

® Exponent: 00000001
=> actual exponent =1 - 127 =-126

® Fraction: 000...00 = significand = 1.0
= +1.0x27126x+]12x 1038
®m Largest value

® exponent: 11111110
=> actual exponent = 254 — 127 = +127

® Fraction: 111...11 = significand = 2.0
m 2.0 x2M127=+3.4 x 10*38

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 5

Double-Precision Range

= Exponents 0000...00 and 1111...11 reserved

B Smallest value

® Exponent: 00000000001
=> actual exponent = 1 — 1023 =—-1022

® Fraction: 000...00 = significand = 1.0
m +]1.0x21022=42 2 x 10308
m [argest value

® Exponent: 11111111110
=> actual exponent = 2046 — 1023 = +1023

®m Fraction: 111...11 = significand = 2.0
B 2.0 X 2+1023 ~4+].8 x 10+308

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 6

Floating-Point Precision

m Relative precision
m all fraction bits are significant
m Single: approx 2723
= Equivalent to 23 x log,,2 = 23 x 0.3 = 6 decimal digits of precision
® Double: approx 252
® Equivalent to 52 x log,,2 = 52 x 0.3 = 16 decimal digits of precision

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 7

Floating-Point Example

m Represent —0.75
m-0.75=(-1)!x1.1,x 2"
mS=1
® Fraction =1000...00,
® Exponent =—1 + Bias
= Single: -1 + 127 =126 =01111110,
® Double: -1 + 1023 =1022=01111111110,

®m Single: 1011111101000...00
® Double: 1011111111101000...00

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 8

Floating-Point Example

® What number 1s represented by the single-precision float

11000000101000...00
mS=1
® Fraction =01000...00,
= Fxponent = 10000001, = 129
B x=(—1)! x (1+01,)x 2029-127)
=(—1) x 1.25 x 22
=-5.0

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 9

Denormal Numbers

® Exponent = 000...0 = hidden bit 1s 0

® Smaller than normal numbers

®m allow for gradual underflow, with diminishing precision

B Denormal with fraction = 000...0

P

Two representations
of 0.0!

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 10

Infinities and NaNs

® Exponent=111...1, Fraction = 000...0
® *Infinity

® Can be used in subsequent calculations, avoiding need for
overflow check

= Exponent=111...1, Fraction # 000...0
= Not-a-Number (NaN)

® [ndicates illegal or undefined result
meg.,0.0/0.0

® Can be used in subsequent calculations

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 11

Floating-Point Addition

® Consider a 4-digit decimal example
E 9.999 x 10! +1.610 x 107!
® 1. Align decimal points

Shift number with smaller exponent
9.999 x 10! +0.016 x 10!

® 2. Add significands
= 9999 x 10! +0.016 x 10! =10.015 x 10!

® 3. Normalize result & check for over/underflow
m 1.0015 x 102

® 4. Round and renormalize if necessary
m 1.002 x 10?

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 12

Floating-Point Addition

® Now consider a 4-digit binary example
® 1.000, x 271 +-1.110, x 272 (0.5 +-0.4375)
® 1. Align binary points
Shift number with smaller exponent
1.000, x 21 +-0.111, x 21
® 2. Add significands
= 1.000, x 271 +-0.111, x 2-1 = 0.001, x 2-!
® 3. Normalize result & check for over/underflow
m 1.000, x 274, with no over/underflow
® 4. Round and renormalize if necessary
m 1.000, x 27% (no change) =0.0625

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 13

FP Adder Hardware

® Much more complex than integer adder
® Doing it in one clock cycle would take too long

® Much longer than integer operations

@ Slower clock would penalize all instructions

= FP adder usually takes several cycles
® Can be pipelined

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 14

FP Adder Hardware

Sign | Exponent Fraction Sign | Exponent Fraction
Y \ \
\/_/ Compare
Small ALU
exponents
/
Exponent
difference >
Y v Y v Y v Step 1
o1)= (o 1) r»@ 1)
\
A Y
— Shift smaller
Control Shift right number right j
N
. Add
Big ALU >~ Step 2
\ Y o
0 1 o 1
Increment or > : ‘
decrement | Shift left or right Normalize Step 3
I
»- Rounding hardware Round Step 4
\ \ \
Sign | Exponent Fraction

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 15

Floating-Point Multiplication

®m Consider a 4-digit decimal example
B 1.110 x 10'9% 9.200 x 107
1. Add exponents
® For biased exponents, subtract bias from sum
® New exponent=10+-5=35
2. Multiply significands
= 1.110 x9.200=10.212 = 10.212 x 10°
3. Normalize result & check for over/underflow
m 1.0212 x 10°
® 4. Round and renormalize if necessary
m 1.021 x 106
® 5. Determine sign of result from signs of operands
m +1.021 x 106

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 16

Floating-Point Multiplication

® Now consider a 4-digit binary example
B 1.000, x 271 x—1.110, x 272 (0.5 x -0.4375)
1. Add exponents
® Unbiased: -1 +-2=-3
® Biased: (-1 + 127) + (-2 + 127) =3 +254 - 127 =-3 + 127
= 2. Multiply significands
= 1.000,x 1.110,=1.1102 = 1.110, x 23
® 3. Normalize result & check for over/underflow
® 1.110, x 273 (no change) with no over/underflow
® 4. Round and renormalize if necessary
® 1.110, x 273 (no change)
® 5. Determine sign: +ve X —ve = —ve
m —1.110,x273 =-0.21875

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

17

FP Arithmetic Hardware

® FP multiplier 1s of similar complexity to FP adder
= But uses a multiplier for significands instead of an adder

®m FP arithmetic hardware usually does

® Addition, subtraction, multiplication, division, reciprocal, square-
root

® FP <> integer conversion

= Operations usually takes several cycles
® Can be pipelined

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell

18

EFP Instructions in MIPS

® FP hardware 1s coprocessor 1
® Adjunct processor that extends the ISA
® Separate FP registers
m 32 single-precision: $f0, $f1, ... $f31
® Paired for double-precision: $f0/$f1, $£2/$13, ...
m Release 2 of MIPs ISA supports 32 x 64-bit FP reg’s
® FP instructions operate only on FP registers
® Programs generally don’t do integer ops on FP data, or vice versa
= More registers with minimal code-size impact
® FP load and store instructions

® |wc1, Idc1, swc1, sdci
m e.g., ldc1 $f8, 32($sp)

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 19

EFP Instructions in MIPS

Single-precision arithmetic
® add.s, sub.s, mul.s, div.s
m e.g., add.s $f0, $f1, $f6
® Double-precision arithmetic
® add.d, sub.d, mul.d, div.d
= e.g., mul.d $f4, $f4, $f6
® Single- and double-precision comparison
= c.xx.s,c.xx.d (xxiseq,lt, le, ...)
m Sets or clears FP condition-code bit
m e.g. clt.s $f3, $f4
® Branch on FP condition code true or false

®m bcit, bctf
m ec.g., bc1t TargetLabel

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 20

FP Example: °F to °C

m C code:

float f2c (float fahr) {
return ((5.0/9.0)*(fahr - 32.0));

}

m fahr in $f12, result in $f0, literals in global memory space

® Compiled MIPS code:

f2c: lwc1 $f16, const5($Sgp)
lwc2 $f18, const9($gp)
div.s $f16, $f16, $f18
lwc1 $f18, const32($gp)
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18

jr %ra

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 21

FP Example: Array Multiplication

B X=X+YxZ
® All 32 x 32 matrices, 64-bit double-precision elements

C code:

void mm (double X[][],
double y[][], double zZ[][]) {
inti, j, k;
for(i=0;i1=32;i=i+1)
for(j=0;j1=32;j=j+1)
for(k=0; k! =32; k=k +1)
{illi] = X0} |
+ y[il[k] = z[K][T;

}

m Addresses of X, y, z in $a0, $al, $a2, and
I, j, K in $s0, $s1, $s2

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 22

FP Example: Array Multiplication

MIPS code:

i $t1, 32 # $t1 = 32 (row size/loop end)

li $s0,0 # i = 0; initialize 1st for loop
L1:1li $s1,0 #j=0; restart 2nd for loop
L2: i $s2,0 # k = 0; restart 3rd for loop

sll $t2, $s0, 5 # $t2 =i * 32 (size of row of x)
addu $t2, $12, $s1 # $t2 =i * size(row) + j

sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]
l.d $f4, 0($t2) # $f4 = 8 bytes of X]i][j]

L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
addu $t0, $t0, $s1 # $t0 = k * size(row) + j
sll $t0, $t0, 3 # $t0 = byte offset of [K][j]
addu $t0, $a2, $t0 # $t0 = byte address of z[K][j]
l.d $f16, 0($t0) # $f16 = 8 bytes of z[K][j]

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 23

FP Example: Array Multiplication

sll $t0, $s0, 5 # $t0 = i*32 (size of row of y)
addu $t0, $t0, $s2 # $t0 = i*size(row) + k

sl $t0, $t0, 3 # $t0 = byte offset of [i][K]

addu $t0, $a1, $t0 # $t0 = byte address of y[i][K]
.d $f18, 0($t0) # $f18 = 8 bytes of y[iJ[K]

mul.d $f16, $f18, $f16 # $f16 = y[il[K] * z[K][j]
add.d $f4, $f4, $f16 # f4=x[il[j] + y[il[k]*z[K][j]

addiu $s2, $s2, 1 # Pk k + 1
bne $s2, $t1,L3 #if (k!=32)goto L3
s.d $f4, 0($t2) #x[i[j] = $4

addiu $s1, $s1,1 #$j=j+ 1
bne $s1, $t1,L2 #if (j!=32)goto L2

addiu $s0, $s0,1 #S$i=i+1
bne $s0, $t1, L1 #if (i != 32) go to L1

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 24

Accurate Arithmetic

m [EEE Std 754 specifies additional rounding control

Extra bits of precision (guard, round, sticky)

= Choice of rounding modes

= Allows programmer to fine-tune numerical behavior of a computation

@ Not all FP units implement all options

® Most programming languages and FP libraries just use defaults
® Trade-off between hardware complexity, performance, and market

requirements

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

25

Interpretation of Data

Bits have no inherent meaning

® [nterpretation depends on the instructions applied

Computer representations of numbers
= Finite range and precision
® Need to account for this in programs

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 26

Associativity

® Parallel programs may interleave operations in unexpected
orders
B Assumptions of associativity may fail

(xty)+z x+(y+2z)

X| -1.50E+38 -1.50E+38
y| 1.50E+38 0.00E+00
Z 1.0 1.0 1.50E+38

1.00E+00 0.00E+00

®m Need to validate parallel programs under varying degrees of
parallelism

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 27

x86 FP Architecture

® Originally based on 8087 FP coprocessor
= 8 x 80-bit extended-precision registers
= Used as a push-down stack
= Registers indexed from TOS: ST(0), ST(1), ...

FP values are 32-bit or 64 in memory

®m Converted on load/store of memory operand

®m [nteger operands can also be converted
on load/store

® Very difficult to generate and optimize code

®m Result: poor FP performance

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 28

x86 FP Instructions

Data transfer Arithmetic Compare Transcendental
FILD mem/ST(i) FIADDP mem/ST(i) FICOM FPATAN
FISTP mem/ST(i) FISUBRP mem/ST(i) FIMUL FIUCOM F2XMI
FLDPI mem/ST(i) FIDIVEE mem/ST(i) | FSTSW AX/mem FCOS
FLD1 FSQRT FPTAN
FLDZ FABS FPREM

FRNDINT FPSIN

FYL2X

® Optional variations
® [integer operand
®m : pop operand from stack
m [reverse operand order
® But not all combinations allowed

University of Texas at Austin CS352H - Computer Systems Architecture

Fall 2009 Don Fussell

29

Streaming SIMD Extension 2 (SSE2)

® Adds 4 x 128-bit registers
m Extended to 8 registers in AMD64/EM64T

® Can be used for multiple FP operands
® 2 X 64-bit double precision
= 4 x 32-bit double precision
® [nstructions operate on them simultaneously

® Single-Instruction Multiple-Data

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 30

Right Shift and Division

® [eft shift by i places multiplies an integer by 2!
® Right shift divides by 2/?
= Only for unsigned integers
® For signed integers
= Arithmetic right shift: replicate the sign bit
=ecg,5/4
mi1111011,>>2=11111110,=-2

® Rounds toward —oo

mcf 11111011, >>>2=00111110, = +62

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 31

Who Cares About FP Accuracy?

® [mportant for scientific code

® But for everyday consumer use?
B “My bank balance is out by 0.0002¢!” ®

® The Intel Pentium FDIV bug

® The market expects accuracy
m See Colwell, The Pentium Chronicles

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 32

Concluding Remarks

® [SAs support arithmetic
® Signed and unsigned integers
® Floating-point approximation to reals
= Bounded range and precision
= Operations can overflow and underflow

m MIPS ISA

®m Core instructions: 54 most frequently used
®m 100% of SPECINT, 97% of SPECFP

® Other instructions: less frequent

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 33

Next Lecture

® Performance evaluation

B Micro-architecture introduction
® Chapter4.1 —4.4

University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell 34

