Normal Mapping and Tangent Spaces

Normal Maps

- Like bump maps but normals already computed
- 3 elements per texel - x,y,z components of normal

■ Defined in texture (surface) space

- Must map to object space to use
- Problem: What vectors in object space correspond to the x, y, and z axes in texture space?
$■$ Solution: Define two orthogonal vectors tangent to the surface and one normal to the surface
- Surface space can now be called tangent space

Mapping normal to surface

- Step 1: Find texture coordinate of surface
- Step 2: Look up texel at that coordinate
- Step 3: Find rotation that maps tangent space normal to object space normal for the given pixel
- Step 4: Rotate tangent space normal defined in the texel by this rotation to define the normal at the surface point

Axes in object space

- For sphere in $\quad x=r \sin \theta \cos \varphi \quad u=\frac{\varphi}{2 \pi} \quad x=-r \sin \pi v \cos 2 \pi u$ polar coordinates $y=r \sin \theta \sin \varphi \quad \begin{array}{ll}2 \pi \\ \pi-\theta\end{array} \quad y=-r \sin \pi v \sin 2 \pi u$

$$
z=r \cos \theta \quad v=\frac{\pi-\theta}{\pi} \quad z=-r \cos \pi v
$$

$$
\mathbf{t}=\left[\begin{array}{c}
\frac{d x}{d u} \\
\frac{d y}{d u} \\
\frac{d z}{d u}
\end{array}\right]=\left[\begin{array}{c}
\frac{d x}{d \varphi} \\
\frac{d y}{d \varphi} \\
\frac{d z}{d \varphi}
\end{array}\right]=\left[\begin{array}{c}
-r \sin \theta \sin \varphi \\
r \sin \theta \cos \varphi \\
0
\end{array}\right] \mathbf{b}=\left[\begin{array}{c}
\frac{d x}{d v} \\
\frac{d y}{d v} \\
\frac{d z}{d v}
\end{array}\right]=\left[\begin{array}{c}
-\frac{d x}{d \theta} \\
-\frac{d y}{d \theta} \\
-\frac{d z}{d \theta}
\end{array}\right]=\left[\begin{array}{c}
-r \cos \theta \cos \varphi \\
-r \cos \theta \sin \varphi \\
r \sin \theta \\
\end{array}\right]
$$

$\mathbf{n}=\mathbf{t} \times \mathbf{b} \quad$ need to normalize \mathbf{t}, \mathbf{b}, and \mathbf{n}

Rotation - tangent and object space

■ Object space to tangent space

- For light vectors

$$
\mathbf{L}^{\prime}=\left[\begin{array}{cccc}
t_{x} & t_{y} & t_{z} & 0 \\
b_{x} & b_{y} & b_{z} & 0 \\
n_{x} & n_{y} & n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{L}
$$

- Tangent space to object space
- For normals

$$
\mathbf{n}^{\prime \prime}=\left[\begin{array}{cccc}
t_{x} & b_{x} & n_{x} & 0 \\
t_{y} & b_{y} & n_{y} & 0 \\
t_{z} & b_{z} & n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{n}^{\prime}
$$

Messier for polygons (triangles)

- Given a triangle with vertices $\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}$ and texture coordinates for those vertices
$■$ We need to solve for \mathbf{t} and \mathbf{b}
- We already know how to get the triangle normal n

Solving for \mathbf{t} and \mathbf{b}

$$
\begin{aligned}
& \mathbf{V}_{1}=\mathbf{P}_{1}-\mathbf{P}_{0}=\left(u_{1}-u_{0}\right) \mathbf{t}+\left(v_{1}-v_{0}\right) \mathbf{b}=\Delta u_{1} \mathbf{t}+\Delta v_{1} \mathbf{b} \\
& \mathbf{V}_{2}=\mathbf{P}_{2}-\mathbf{P}_{0}=\left(u_{2}-u_{0}\right) \mathbf{t}+\left(v_{2}-v_{0}\right) \mathbf{b}=\Delta u_{2} \mathbf{t}+\Delta v_{2} \mathbf{b} \\
& {\left[\begin{array}{ll}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\Delta u_{1} & \Delta v_{1} \\
\Delta u_{2} & \Delta v_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{t} \\
\mathbf{b}
\end{array}\right]} \\
& {\left[\begin{array}{cc}
\Delta u_{1} & \Delta v_{1} \\
\Delta u_{2} & \Delta v_{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{t} \\
\mathbf{b}
\end{array}\right]} \\
& \frac{1}{\Delta u_{1} \Delta v_{2}-\Delta u_{2} \Delta v_{1}}\left[\begin{array}{cc}
\Delta v_{2} & -\Delta v_{1} \\
-\Delta u_{2} & \Delta u_{1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{t} \\
\mathbf{b}
\end{array}\right]
\end{aligned}
$$

Why is it messy?

- For smooth shading you average the tangents and bitangents as well as normals of triangles sharing a vertex to get different \mathbf{t}, \mathbf{b} and \mathbf{n} at each vertex.
- The you interpolate these across the triangle.
- At each pixel, the \mathbf{t}, \mathbf{b} and \mathbf{n} vectors you get are no longer orthogonal.
- So you have to fix them, e.g. using Gram-Schmidt orthogonalization, before you can make a rotation matrix from them.

Gram-Schmidt Orthogonalization

- Start with unit vector \mathbf{n}, make \mathbf{t}^{\prime} orthogonal to it

$$
\mathbf{t}^{\prime}=\mathbf{t}-(\mathbf{t} \cdot \mathbf{n}) \mathbf{n}
$$

■ Normalize t'
■ Now make borthogonal to both \mathbf{n} and \mathbf{t}^{\prime}

$$
\mathbf{b}^{\prime}=\mathbf{b}-(\mathbf{b} \cdot \mathbf{n}) \mathbf{n}-\left(\mathbf{b} \cdot \mathbf{t}^{\prime}\right) \mathbf{t}^{\prime}
$$

- Normalize b'

