Intro to OpenGL II

Don Fussell
Computer Science Department
The University of Texas at Austin

Where are we?

- Last lecture, we started the OpenGL pipeline with our example code
- This lecture we'll continue that

OpenGL API Example

glShadeModel(GL_SMOOTH); // smooth color interpolation glEnable(GL_DEPTH_TEST); // enable hidden surface removal
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); glBegin(GL_TRIANGLES); // every 3 vertexes makes a triangle glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100\%)
glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)
glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100\%)
glVertex3f($0.8,0.8,-0.2) ; / / \mathrm{XYZ}=(8 / 10,8 / 10,-2 / 10)$
glColor4ub $(0,0,255,255)$; // $\mathrm{RGBA}=(0,0,1,100 \%)$
glVertex3f($0.0,-0.8,-0.2)$; // XYZ $=(0,-8 / 10,-2 / 10)$

glEnd();

GLUT API Example

```
#include <GL/glut.h> // includes necessary OpenGL headers
void display() {
    // << insert code on prior slide here >>
    glutSwapBuffers();
}
void main(int argc, char **argv) {
```



```
    // request double-buffered color window with depth buffer
    glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
    glutInit(&argc, argv);
    glutCreateWindow("simple triangle");
    glutDisplayFunc(display); // function to render window
    glutMainLoop();
}
```


NDC to Window Space

- Done transforming from NDC space to window space
- Next: Rasterize, then shade pixels (fragments)

Screen Space Coordinates of Triangle

- Assume the window is 500×500 pixels
- So glViewport $(0,0,500,500)$ has been called

Rasterization

- Process of converting a clipped triangle into a set of sample locations covered by the triangle
- Also can rasterize points and lines

Determining a Triangle

- Classic view: 3 points determine a triangle
- Given 3 vertex positions, we determine a triangle
- Hence glVertex3f/ glVertex3f/glVertex3f

- Rasterization view: 3 oriented edge equations determine a triangle

Each oriented edge equation in form:

$$
A * x+B^{*} y+C \geq 0
$$

Oriented Edge Equations

Step back: Why Triangles?

- Simplest linear primitive with area

Face meshed with triangles

■ We can subdivide regions of high curvature until we reach flat regions to represent as a triangle

Concave vs. Convex

- Region is convex if any two points can be connected by a line segment where all points on this segment are also in the region
- Opposite is non-convex
- Concave means the region is connected but NOT convex
- Connected means there's some path (not necessarily a line) from every two points in the region that is entirely in the region

7 Cases

$$
E_{i}(x, y)=A_{i} x+B_{i} y+C_{i}
$$

Inside Triangle Test

- Evaluate edge equations at grid of sample points
- If sample position is "inside" all 3 edge equations, the position is "within" the triangle
- Implicitly parallel-all samples can be tested at once
- Good for hardware implementation
- Pixel-planes
- Pineda tiled extension

Other Rasterization Approaches

■ Subdivision approaches
■ Easy to split a triangle into 4 triangles
■ Keep splitting triangles until they are slightly smaller
 than your samples

■ Often called micro-polygon rendering

- Chief advantage is being able to apply displacements during the subdivision
- Edge walking approaches

■ Often used by CPU-based rasterizers

- Much more sequential than Pineda approach

■ Work efficient and amendable to
 fixed-point implementation

Micropolygons

- Rasterization becomes a geometry dicing process
- Approach taken by Pixar
- For production rendering when scene detail and quality is at a premium; interactivity, not so much
- High-level representation is generally patches rather than mere triangles

Displacement mapping of a meshed sphere [Pixar, RenderMan]

Scanline Rasterization

- Find a "top" to the triangle

■ Now walk down edges

Scanline Rasterization

- Move down a scan-line, keeping track of the left and right ends of the triangle

Scanline Rasterization

- Repeat, moving down a scanline
- Cover the samples between the left and right ends of the triangle in the scan-line

Scanline Rasterization

$■$ Process repeats for each scanline
-Easy to "step" down to the next scanline based on the slopes of two edges

Scanline Rasterization

■ Eventually reach a vertex

- Transition to a different edge and continue filling the span within the triangle

Scanline Rasterization

- Until you finish the triangle
- Friendly for how CPU memory arranges an image as a 2D array with horizontal locality
- Layout is good for raster scan-out too

Creating Edge Equations

- Triangle rasterization need edge equations

■ How do we make edge equations?

- An edge is a line so determined by two points
- Each of the 3 triangle edges is determined by two of the 3 triangle vertexes (L, M, N)

How do we get

$$
A * x+B * y+C \geq 0
$$

for each edge from L, M, and N ?

Edge Equation Setup

- How do you get the coefficients A, B, and C? P is an
- Determinants help-consider the LN edge:
arbitrary point

$$
\left|\begin{array}{cc}
N_{x}-L_{x} & N_{y}-L_{y} \\
P_{x}-L_{x} & P_{y}-L_{y}
\end{array}\right|>0 \begin{gathered}
\text { or more } \\
\text { succinctly }
\end{gathered}\left|\begin{array}{c}
N-L \\
P-L
\end{array}\right|>0
$$

- Expansion: $(\mathrm{Ly}-\mathrm{Ny}) \times \mathrm{Px}+(\mathrm{Nx}-\mathrm{Lx}) \times \mathrm{Py}+\mathrm{Ny} \times \mathrm{Lx}-\mathrm{Nx} \times \mathrm{Ly}>0$
- $\mathrm{A}_{\mathrm{LN}}=\mathrm{Ly}-\mathrm{Ny}$
- $\mathrm{B}_{\mathrm{LN}}=\mathrm{Nx}-\mathrm{Lx}$
- $\mathrm{C}_{\mathrm{LN}}=\mathrm{Ny} \times \mathrm{Lx}-\mathrm{Nx} \times \mathrm{Ly}$
- Geometric interpretation: twice signed area of the triangle LPN

Screen Space Coordinates of Triangle

- Assume the window is 500×500 pixels
- So glViewport $(0,0,500,500)$ has been called

Look at the LN edge

■ Expansion:

$$
\begin{aligned}
& (\mathrm{Ly}-\mathrm{Ny}) \times \mathrm{Px}+(\mathrm{Nx}-\mathrm{Lx}) \times \mathrm{Py}+\mathrm{Ny} \times \mathrm{Lx}-\mathrm{Nx} \times \mathrm{Ly}>0 \\
& \square \mathrm{~A}_{\mathrm{LN}}=\mathrm{Ly}-\mathrm{Ny}=450-450=0 \\
& \square \mathrm{~B}_{\mathrm{LN}}=\mathrm{Nx}-\mathrm{Lx}=50-450=-400 \\
& \square C_{\mathrm{LN}}=\mathrm{Ny} \times \mathrm{Lx}-\mathrm{Nx} \times \mathrm{Ly}=180,000
\end{aligned}
$$

\square Is center at $(250,250)$ in the triangle?
$-\mathrm{A}_{\mathrm{LN}} \times 250+\mathrm{B}_{\mathrm{LN}} \times 250+\mathrm{C}_{\mathrm{LN}}=? ? ?$
$\square 0 \times 250-400 \times 250+180,000=80,000$
$\square 80,000>0$ so $(250,250)$ is in the triangle

All Three Edge Equations

$■$ All three triangle edge equations:

$$
\left|\begin{array}{c}
M-N \\
P-N
\end{array}\right|>0 \quad\left|\begin{array}{l}
N-L \\
P-L
\end{array}\right|>0 \quad\left|\begin{array}{c}
L-M \\
P-M
\end{array}\right|>0
$$

\square Satisfy all 3 and P is in the triangle

- And then rasterize at sample location P

■ Caveat: if $\left|\begin{array}{ll}N-L \\ M-L\end{array}\right|<0 \begin{aligned} & \text { reverse the } \\ & \text { comparison sense }\end{aligned}$

Water Tight Rasterization

- Two triangles often share a common edge
- Indeed in closed polygonal meshes, every triangle shares its edges with as many as three other triangles
- Called adjacent or "shared edge" triangles
- Crucial rasterization property

■ No double sampling (hitting) along the shared edge
■ No sample gaps (pixel fall-out) along the shared edge

- Samples along the shared edge must be belong to exactly one of the two triangles
- Not both, not neight
- Water tight rasterization is crucial to many higher-level algorithms; otherwise, rendering artifacts
- Possible artifact: if pixels hit twice on an edge, the pixel could be double blended
- Example application: Stenciled Shadow Volumes (SSV)

Water Tight Rasterization Solution

■ First "snap" vertex positions to a grid
■ Grid can (and should) be sub-pixel samples

- Results in fixed-point vertex positions
- Fixed-point math allows exact edge computations
- Surprising? Ensuring robustness requires discarding excess precision
- Problem

■ What happens when edge equation evaluates to exactly zero at a sample position?
■ Need a consistent tie breaker

Tie Breaker Rule

- Look at edge equation coefficients
- Tie-breaker rule when edge equation evaluates to zero
- "Inside" edge when edge equation is zero and $\mathrm{A}>0$ when $\mathrm{A} \neq 0$, or $\mathrm{B}>0$ when $\mathrm{A}=0$
\square Complete coverage determination rule
- if $(\mathrm{E}(\mathrm{x}, \mathrm{y})>0 \|(\mathrm{E}(\mathrm{x}, \mathrm{y})==0 \& \&(\mathrm{~A}!=0 ? \mathrm{~A}>0: \mathrm{B}>$ $0)$))
sample at (x, y) is inside edge

Zero Area Triangles

■ We reverse the edge equation comparison sense if the (signed) area of the triangle is negative

- What if the area is zero?
- Linear algebra indicates a singular matrix
- Need to cull the primitive
- Also useful to cull primitives when area is negative
- OpenGL calls this face culling

■ Enabled with glEnable(GL_CULL_FACE)
■ When drawing closed meshes, back face culling can avoid drawing primitives assured to be occluded by front faces

Back Face Culling Example

Torus drawn in wire-frame without back face culling

Notice considerable extraneous triangles that would normally be occluded

Torus drawn in wire-frame with back face culling

By culling back-facing (negative signed area) triangles, fewer triangles are rasterized

Simple Fragment Shading

- For all samples (pixels) within the triangle, evaluate the interpolated color
- Requires having math to determine color at the sample (x, y) location

Color Interpolation

- Our simple triangle is drawn with smooth color interpolation
- Recall: glShadeModel(GL_SMOOTH)
- How is color interpolated?

- Think of a plane equation to computer each color component (say red) as a function of (x, y)
- Just done for samples positions within the triangle

$$
\text { "redness" }=A_{\text {red }} x+B_{\text {red }} y+C_{\text {red }}
$$

Setup Plane Equation

$■$ Setup plane equation to solve for "red" as a function of (x,y)

$$
\left[\begin{array}{l}
L_{\text {red }} \\
M_{\text {red }} \\
N_{\text {red }}
\end{array}\right]=\left[\begin{array}{ccc}
L_{x} & L_{y} & 1 \\
M_{x} & M_{y} & 1 \\
N_{x} & N_{y} & 1
\end{array}\right]\left[\begin{array}{l}
A_{\text {red }} \\
B_{\text {red }} \\
C_{\text {red }}
\end{array}\right]
$$

Solve for plane equation coefficients A, B, C

$$
\left[\begin{array}{ccc}
L_{x} & L_{y} & 1 \\
M_{x} & M_{y} & 1 \\
N_{x} & N_{y} & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
L_{\text {red }} \\
M_{\text {red }} \\
N_{\text {red }}
\end{array}\right]=\left[\begin{array}{l}
A_{\text {red }} \\
B_{\text {red }} \\
C_{\text {red }}
\end{array}\right]
$$

Do the same for green, blue, and alpha (opacity)...

More Intuitive Way to Interpolate

- Barycentric coordinates

$\operatorname{attribute}(\mathrm{P})=\alpha \times \operatorname{attribute}(\mathrm{L})+\beta \times \operatorname{attribute}(\mathrm{M})+\gamma \times \operatorname{attribute}(\mathrm{N})$

Hardware Triangle Rendering Rates

- Top GPUs can setup over a billion triangles per second for rasterization
- Triangle setup \& rasterization is just one of the (many, many) computation steps in GPU rendering

Remaining Steps

- Depth interpolation
- Color update
- Scan-out to the display
- Next time...

Programming tips

-3D graphics, whether OpenGL or Direct3D or any other API, can be frustrating

- You write a bunch of code and the result is

Nothing but black window; where did your rendering go??

Things to Try

- Set your clear color to something other than black!
- It is easy to draw things black accidentally so don' t make black the clear color
- But black is the initial clear color
- Did you draw something for one frame, but the next frame draws nothing?
- Are you using depth buffering? Did you forget to clear the depth buffer?
- Remember there are near and far clip planes so clipping in Z , not just $\mathrm{X} \& \mathrm{Y}$
- Have you checked for glGetError?
- Call glGetError once per frame while debugging so you can see errors that occur
- For release code, take out the glGetError calls
- Not sure what state you are in?
- Use glGetIntegerv or glGetFloatv or other query functions to make sure that OpenGL's state is what you think it is
- Use glutSwapBuffers to flush your rendering and show to the visible window
- Likewise glFinish makes sure all pending commands have finished
- Try reading
- http://www.slideshare.net/Mark_Kilgard/avoiding-19-common-opengl-pitfalls
- This is well worth the time wasted debugging a problem that could be avoided

Next Lecture

- Finish OpenGL pipeline
- Transforms and Graphics Math
- Interpolation, vector math, and number representations for computer graphics

Thanks

- Presentation approach and figures from

■David Luebke [2003]

- Brandon Lloyd [2007]
- Geometric Algebra for Computer Science [Dorst, Fontijne, Mann]
■ via Mark Kilgard

