
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Intro to OpenGL II

Don Fussell
Computer Science Department

The University of Texas at Austin

Where are we?

 Last lecture, we started the OpenGL pipeline with
our example code

 This lecture we’ll continue that

OpenGL API Example

glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES); // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

GLUT API Example

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
 // << insert code on prior slide here >>
 glutSwapBuffers();
}
void main(int argc, char **argv) {
 // request double-buffered color window with depth buffer
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
 glutInit(&argc, argv);
 glutCreateWindow(“simple triangle”);
 glutDisplayFunc(display); // function to render window
 glutMainLoop();
}

NDC to Window Space

 Done transforming from
NDC space to window
space
 Next: Rasterize, then
shade pixels (fragments)

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Screen Space Coordinates of Triangle
 Assume the window is 500x500 pixels

So glViewport(0,0,500,500) has been called

L=(50, 450, 0.65) N=(450,450,0.4)

M=(250,50,0.4)

center at (250,250)

origin at (0,0)

Rasterization

 Process of converting a
clipped triangle into a
set of sample locations
covered by the triangle

Also can rasterize points
and lines

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Determining a Triangle
  Classic view: 3 points
determine a triangle

Given 3 vertex positions, we
determine a triangle
Hence glVertex3f/
glVertex3f/glVertex3f

  Rasterization view: 3
oriented edge equations
determine a triangle

Each oriented edge equation in form:
A*x + B*y + C ≥ 0

Oriented Edge Equations

Step back: Why Triangles?
  Simplest linear primitive with area

If it got any simpler, the primitive would be a line (just 2
vertexes)
Guaranteed to be planar (flat) and convex (not concave)

  Triangles are compact
3 vertexes, 9 scalar values in affine 3D, determine a triangle
When in a mesh, vertex positions can be “shared” among
adjacent triangles

  Triangles are simple
Simplicity and generality of triangles facilitates elegant,
hardware-amenable algorithms

  Triangles lacks curvature
BUT with enough triangles, we can piecewise approximate
just about any manifold

  We can subdivide regions of high curvature until we
reach flat regions to represent as a triangle

Face meshed
with triangles

Concave vs. Convex

  Region is convex if any two points can be connected by a line
segment where all points on this segment are also in the region

Opposite is non-convex
  Concave means the region is connected but NOT convex

Connected means there’s some path (not necessarily a line) from
every two points in the region that is entirely in the region

7 Cases

+-+

++-

-++
+++

-+-

--+

+--

(x,y)

Ei(x,y) = Aix + Biy + Ci

Inside Triangle Test
  Evaluate edge equations at grid of sample points

If sample position is “inside” all 3 edge equations, the position is
“within” the triangle
Implicitly parallel—all samples can be tested at once

+ + +
-

-
-

•  Good for
hardware
implementation
•  Pixel-planes
•  Pineda tiled

extension

Other Rasterization Approaches

 Subdivision approaches
Easy to split a triangle into 4 triangles
Keep splitting triangles until they are slightly smaller
than your samples

 Often called micro-polygon rendering
 Chief advantage is being able to apply displacements during
the subdivision

 Edge walking approaches
Often used by CPU-based rasterizers
Much more sequential than Pineda approach
Work efficient and amendable to
fixed-point implementation

Micropolygons
Rasterization becomes a geometry dicing process

Approach taken by Pixar
  For production rendering when scene detail and quality is at a premium;
interactivity, not so much

High-level representation is generally patches rather than mere triangles

Displacement mapping of a meshed sphere [Pixar, RenderMan]

CS 354

Scanline Rasterization

 Find a “top” to the triangle
Now walk down edges

CS 354

Scanline Rasterization

 Move down a scan-line, keeping track of the left
and right ends of the triangle

CS 354

Scanline Rasterization

 Repeat, moving down a scanline
Cover the samples between the left and right
ends of the triangle in the scan-line

CS 354

Scanline Rasterization

 Process repeats for each scanline
Easy to “step” down to the next scanline based
on the slopes of two edges

CS 354

Scanline Rasterization

 Eventually reach a vertex
Transition to a different edge and continue filling
the span within the triangle

CS 354

Scanline Rasterization
 Until you finish the triangle

Friendly for how CPU memory arranges an image as a 2D
array with horizontal locality
Layout is good for raster scan-out too

Creating Edge Equations

 Triangle rasterization need edge equations
How do we make edge equations?

 An edge is a line so determined by two points
Each of the 3 triangle edges is determined by two of the
3 triangle vertexes (L, M, N)

L=(Lx,Ly)

N=(Nx,Ny)

M=(Mx,My)

How do we get

 A*x + B*y + C ≥ 0

for each edge
from L, M, and N?

Edge Equation Setup
  How do you get the coefficients A, B, and C?
  Determinants help—consider the LN edge:

  Expansion: (Ly-Ny)×Px + (Nx-Lx)×Py + Ny×Lx-Nx×Ly > 0

ALN = Ly-Ny
BLN = Nx-Lx
CLN = Ny×Lx-Nx×Ly

  Geometric interpretation: twice
signed area of the triangle LPN

0>
−−

−−

yyxx

yyxx

LPLP
LNLN

0>
−

−

LP
LN

or more
succinctly

L=(Lx,Ly)

N=(Nx,Ny)

P=(Px,Py)

P is an
arbitrary point

Screen Space Coordinates of Triangle
 Assume the window is 500x500 pixels

So glViewport(0,0,500,500) has been called

L=(50, 450, 0.65) N=(450,450,0.4)

M=(250,50,0.4)

center at (250,250)

origin at (0,0)

Look at the LN edge
 Expansion:
 (Ly-Ny)×Px + (Nx-Lx)×Py + Ny×Lx-Nx×Ly > 0

ALN = Ly-Ny = 450-450 = 0
BLN = Nx-Lx = 50-450 = -400
CLN = Ny×Lx-Nx×Ly = 180,000

 Is center at (250,250) in the triangle?
ALN × 250 + BLN × 250 + CLN = ???
0 × 250 – 400 × 250 + 180,000 = 80,000
 80,000 > 0 so (250,250) is in the triangle

All Three Edge Equations
 All three triangle edge equations:

 Satisfy all 3 and P is in the triangle
And then rasterize at sample location P

 Caveat: if reverse the

0>
−

−

LP
LN L −M

P −M
> 0M − N

P − N
> 0

0<
−

−

LM
LN

comparison sense

Water Tight Rasterization
  Two triangles often share a common edge

Indeed in closed polygonal meshes, every triangle shares its edges
with as many as three other triangles

 Called adjacent or “shared edge” triangles
  Crucial rasterization property

No double sampling (hitting) along the shared edge
No sample gaps (pixel fall-out) along the shared edge
Samples along the shared edge must be belong to exactly one of
the two triangles

 Not both, not neight
  Water tight rasterization is crucial to many higher-level
algorithms; otherwise, rendering artifacts

Possible artifact: if pixels hit twice on an
edge, the pixel could be double blended
Example application: Stenciled
Shadow Volumes (SSV)

Water Tight Rasterization Solution

 First “snap” vertex positions to a grid
Grid can (and should) be sub-pixel samples
Results in fixed-point vertex positions

 Fixed-point math allows exact edge computations
Surprising? Ensuring robustness requires discarding
excess precision

 Problem
What happens when edge equation evaluates to exactly
zero at a sample position?
Need a consistent tie breaker

Tie Breaker Rule

 Look at edge equation coefficients
 Tie-breaker rule when edge equation
evaluates to zero
“Inside” edge when edge equation is zero and
A > 0 when A ≠ 0, or B > 0 when A = 0

 Complete coverage determination rule
if (E(x,y) > 0 || (E(x,y)==0 && (A != 0 ? A > 0 : B >
0)))
 sample at (x,y) is inside edge

Zero Area Triangles

 We reverse the edge equation comparison sense if
the (signed) area of the triangle is negative
 What if the area is zero?

Linear algebra indicates a singular matrix
Need to cull the primitive

 Also useful to cull primitives when area is
negative

OpenGL calls this face culling
 Enabled with glEnable(GL_CULL_FACE)

When drawing closed meshes, back face culling can
avoid drawing primitives assured to be occluded by
front faces

Back Face Culling Example

Torus drawn in wire-frame
without back face culling

Notice considerable extraneous
triangles that would normally
be occluded

Torus drawn in wire-frame
with back face culling

By culling back-facing (negative
signed area) triangles, fewer
triangles are rasterized

Simple Fragment Shading
  For all samples (pixels)
within the triangle, evaluate
the interpolated color

Requires having math to
determine color at the sample
(x,y) location

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Color Interpolation
  Our simple triangle is drawn with smooth color
interpolation

Recall: glShadeModel(GL_SMOOTH)

  How is color interpolated?
Think of a plane equation to computer each color component
(say red) as a function of (x,y)

  Just done for samples positions within the triangle

redredred CyBxAredness ++=""

Setup Plane Equation
 Setup plane equation to solve for “red” as a
function of (x,y)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

red

red

red

yx

yx

yx

red

red

red

C
B
A

NN
MM
LL

N
M
L

1
1
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

red

red

red

red

red

red

yx

yx

yx

C
B
A

N
M
L

NN
MM
LL 1

1
1
1

Setup system of
equations

Solve for plane
equation coefficients
A, B, C

Do the same for green, blue, and alpha (opacity)…

More Intuitive Way to Interpolate
Barycentric coordinates

L M

N

P

Area(PMN)
Area(LMN)

 = α

Area(LPN)
Area(LMN)

 = β

Area(LMP)
Area(LMN)

 = γ

 Note: α + β + γ = 0
by construction

attribute(P) = α×attribute(L) + β×attribute(M) + γ×attribute(N)

Hardware Triangle Rendering Rates

 Top GPUs can setup over a billion triangles
per second for rasterization
 Triangle setup & rasterization is just one of
the (many, many) computation steps in
GPU rendering

Remaining Steps

 Depth interpolation
 Color update
 Scan-out to the display

 Next time…

Programming tips
 3D graphics, whether OpenGL or Direct3D
or any other API, can be frustrating

You write a bunch of code and the result is

Nothing but black window; where did your
rendering go??

Things to Try
  Set your clear color to something other than black!

It is easy to draw things black accidentally so don’t make black the clear color
But black is the initial clear color

  Did you draw something for one frame, but the next frame draws nothing?
Are you using depth buffering? Did you forget to clear the depth buffer?

  Remember there are near and far clip planes so clipping in Z, not just X & Y
  Have you checked for glGetError?

Call glGetError once per frame while debugging so you can see errors that occur
For release code, take out the glGetError calls

  Not sure what state you are in?
Use glGetIntegerv or glGetFloatv or other query functions to make sure that
OpenGL’s state is what you think it is

  Use glutSwapBuffers to flush your rendering and show to the visible window
Likewise glFinish makes sure all pending commands have finished

  Try reading
http://www.slideshare.net/Mark_Kilgard/avoiding-19-common-opengl-pitfalls
This is well worth the time wasted debugging a problem that could be avoided

Next Lecture
  Finish OpenGL pipeline
  Transforms and Graphics Math

Interpolation, vector math, and number representations for
computer graphics

Thanks

 Presentation approach and figures from
David Luebke [2003]
Brandon Lloyd [2007]
Geometric Algebra for Computer Science
[Dorst, Fontijne, Mann]
via Mark Kilgard

