Intro to OpenGL 11

Don Fussell
Computer Science Department

The Unmiversity of Texas at Austin

o gmmEmESSSSE

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Where are we?

m Last lecture, we started the OpenGL pipeline with
our example code

m This lecture we’ll continue that

OpenGL API Example

glShadeModel(GL _SMOOTH); // smooth color interpolation
glEnable(GL DEPTH TEST); // enable hidden surface removal

glClear(GL _COLOR_BUFFER BIT|GL DEPTH BUFFER BIT);

glBegin(GL TRIANGLES); // every 3 vertexes makes a triangle
glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
glVertex31(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
olVertex3£(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

glColordub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
// <<insert code on prior slide here >>
glutSwapBuffers();

b

void main(int argc, char **argv) {
// request double-buffered color window with depth buffer
glutlnitDisplayMode(GLUT RGBA | GLUT DOUBLE | GLUT DEPTH);
glutlnit(&argc, argv);
glutCreateWindow(“simple triangle”);
glutDisplayFunc(display); // function to render window
glutMainLoop();

NDC to Window Space

| Application |

® Done transforming from !

| Vertex batching & assembly |

NDC space to window
SpAace | Clipping |

m Next: Rasterize, then '

shade pixels (fragments) [NDC to Wl‘id"w space |

| Rasterization |

!

| Fragment shading |

v

| Depth testing |<—>

Depth buffer

v
| Color update I—>

Framebuffer

N/ BT/
lef | (EE3
.\

) Screen Space Coordinates of Triangle

® Assume the window 1s 500x500 pixels

m So glViewport(0,0,500,500) has been called

L=(50, 450, 0.65) N=(450,450,0.4)

center at (250,250)

origin at (0,0)

M=(250,50,0.4)

Rasterization

| Application |
® Process of converting a !
: : A | Vertex batching & assembly |
clipped triangle into a
set of sample locations [Clipping |
covered by the triangle !
m Also can rasterize points [NDC to Wlildow space |
and lines r—
| Rasterization |
:
|Fragment shading |
v
| Depth testing |<—>

Depth buffer

- !
- | Color update I—>

Framebuffer

Determining a Triangle

m Classic view: 3 points m Rasterization view: 3
determine a triangle oriented edge equations
m Given 3 vertex positions, we determine a triangle

determine a triangle

m Hence glVertex3t/
glVertex3t/glVertex3f

Each oriented edge equation in form:
A*x +B*y+C>0

Ax+By+C < 0

Step back: Why Triangles?

m Simplest linear primitive with area

m [f 1t got any simpler, the primitive would be a line (just 2
vertexes)

® Guaranteed to be planar (flat) and convex (not concave)
® Triangles are compact

m 3 vertexes, 9 scalar values 1n affine 3D, determine a triangle

® When in a mesh, vertex positions can be “shared” among
adjacent triangles
‘o‘\\.\

® Triangles are simple
N&w“':g@\;ﬁ:‘ m Simplicity and generality of triangles facilitates elegant,
NS hardware-amenable algorithms
m Triangles lacks curvature

m BUT with enough triangles, we can piecewise approximate
just about any manifold

m We can subdivide regions of high curvature until we
reach flat regions to represent as a triangle

LR
(S

b
g
% AT

\f
i
o

Y, Yo
) \g@

Face meshed
with triangles

Concave vs. Convex

Cconvex

g Non-convex

m Region 1s convex 1f any two points can be connected by a line
segment where all points on this segment are also 1n the region

m Opposite 1S non-convex
m Concave means the region is connected but NOT convex

= Connected means there’ s some path (not necessarily a line) from
every two points in the region that is entirely in the region

Inside Triangle Test

m Evaluate edge equations at grid of sample points
m If sample position is “inside” all 3 edge equations, the position is

implementation
* Pixel-planes

“within” the triangle

m [mplicitly parallel—all samples can be tested at once

e Good for
hardware

Pineda tiled
extension

. 44444444
~9000 09, boooooo ooo,o,op,o,opp
""'J""“"Q»......Q,
Q”""""""'Q’ .. ‘.
Q."“""""‘ X" Q..
¢¢¢¢¢
..

...0..................................
00000000000000000000000000000000000000

Other Rasterization Approaches

® Subdivision approaches %
m Easy to split a triangle 1nto 4 triangles

m Keep splitting triangles until they are slightly smaller
than your samples
m Often called micro-polygon rendering

m Chief advantage is being able to apply displacements during
the subdivision

m Edge walking approaches

m Often used by CPU-based rasterizers %
® Much more sequential than Pineda approach ya——

m Work efficient and amendable to
fixed-point implementation

Micropolygons

m Rasterization becomes a geometry dicing process
m Approach taken by Pixar

m For production rendering when scene detail and quality is at a premium;
interactivity, not so much

m High-level representation is generally patches rather than mere triangles

Displacement mapping of a meshed sphere [Pixar, RenderMan]

Scanline Rasterization

mFind a “top” to the triangle
m Now walk down edges

Scanline Rasterization

®m Move down a scan-line, keeping track of the left
and right ends of the triangle

W/ Scanline Rasterization

m Repeat, moving down a scanline

m Cover the samples between the left and right
ends of the triangle in the scan-line

W, Scanline Rasterization

m Process repeats for each scanline

mEasy to “step’ down to the next scanline based
on the slopes of two edges

Scanline Rasterization

m Eventually reach a vertex

m Transition to a different edge and continue filling
the span within the triangle

Scanline Rasterization

® Until you finish the triangle

® Friendly for how CPU memory arranges an image as a 2D
array with horizontal locality

m Layout 1s good for raster scan-out too

Creating Edge Equations

® Triangle rasterization need edge equations
m How do we make edge equations?

® An edge 1s a line so determined by two points

m Each of the 3 triangle edges 1s determined by two of the
3 triangle vertexes (L, M, N)

N=(Nx,Ny) How do we get
A*x +B*y +C>0
M=(Mx, M
C Y for each edge

from L, M, and N?

Edge Equation Setup

®m How do you get the coefficients A, B, and C?
m Determinants help—consider the LN edge:

N,-L, N,-L,

m Expansion: (Ly-Ny)xPx + (Nx-Lx)xPy + NyxLx-NxxLy >0

B-L, B-L
mA =Ly-Ny
m B, = Nx-Lx

> ()

m C, = NyxLx-NxxLy

®m Geometric interpretation: twice
signed area of the triangle LPN

or more
succinctly

N-L
P-L

P is an
arbitrary point

> ()

. N=(Nx,Ny)

..,...v"}):(Px,Py)

L=(Lx,Ly)

N/ BT/
lef | (EE3
.\

) Screen Space Coordinates of Triangle

® Assume the window 1s 500x500 pixels

m So glViewport(0,0,500,500) has been called

L=(50, 450, 0.65) N=(450,450,0.4)

center at (250,250)

origin at (0,0)

M=(250,50,0.4)

’ e/ A

llsf | P27 | ':;-,‘

(AT ES YL

) Look at the edge
IS/

= Expansion:
(Ly-Ny)xPx + (Nx-Lx)xPy + NyxXLx-NxxLy > 0
mA = Ly-Ny =450-450=0
BB, = Nx-Lx = 50-450 = -400
m(C, = NyxLx-NxxLy = 180,000
m [s center at (250,250) 1n the triangle?
mA X250+ B x 250+ C =277

m0 x 250 —-400 x 250 + 180,000 = 80,000
80,000 > 0 so (250,250) 1s 1n the triangle

{0 All Three Edge Equations

m All three triangle edge equations:

M-N
P-N

m Satisty all 3 and P 1s in the triangle

> ()

N -L
P-L

> ()

L —
P -

M
M

® And then rasterize at sample location P

m Caveat: 1if

N-L
M - L

<0

reverse the

> ()

comparison sense

Water Tight Rasterization

m Two triangles often share a common edge

® Indeed in closed polygonal meshes, every triangle shares its edges
with as many as three other triangles

m Called adjacent or “shared edge” triangles
® Crucial rasterization property
® No double sampling (hitting) along the shared edge
m No sample gaps (pixel fall-out) along the shared edge

m Samples along the shared edge must be belong to exactly one of
the two triangles

m Not both, not neight
m Water tight rasterization is crucial to many higher-level

algorithms; otherwise, rendering artifacts

m Possible artifact: if pixels hit twice on an
edge, the pixel could be double blended

m Example application: Stenciled
Shadow Volumes (SSV) -

Water Tight Rasterization Solution

m First “snap’ vertex positions to a grid
® Grid can (and should) be sub-pixel samples
m Results 1n fixed-point vertex positions

® Fixed-point math allows exact edge computations

® Surprising? Ensuring robustness requires discarding
€XCESs precision

®m Problem

m What happens when edge equation evaluates to exactly
zero at a sample position?

®m Need a consistent tie breaker

Ti1e Breaker Rule

m Look at edge equation coefficients

m Tie-breaker rule when edge equation
evaluates to zero

m “Inside” edge when edge equation is zero and
A>0when A #0,orB>0when A=0

m Complete coverage determination rule
mif (E(xy) >0 || (E(x,y)==0 && (A!1=0?A>0:B>
0)))

sample at (X,y) 1s 1nside edge

Zero Area Triangles

m We reverse the edge equation comparison sense 1f
the (signed) area of the triangle i1s negative
m What 1f the area 1s zero?
® Linear algebra indicates a singular matrix
® Need to cull the primitive
m Also useful to cull primitives when area 1s
negative

® OpenGL calls this face culling
m Enabled with glEnable(GL CULL FACE)
®m When drawing closed meshes, back face culling can

avoid drawing primitives assured to be occluded by
front faces

Torus drawn in wire-frame
without back face culling

Notice considerable extraneous
triangles that would normally
be occluded

Torus drawn 1n wire-frame
with back face culling

By culling back-facing (negative
signed area) triangles, fewer
triangles are rasterized

Sitmple Fragment Shading

m For all samples (pixels) | Application |
within the triangle, evaluate l
the interpolated color | Vertex batching & assembly |

m Requires having math to I—Ll
determine color at the sample Clipping

(x,y) location y
| NDC to window space |

4

| Rasterization |

!

| Fragment shading |

v

| Depth testing |<—> Depth buffer

v

|C010r update |—> Framebuffer

2, Color Interpolation

® Our simple triangle 1s drawn with smooth color
interpolation

m Recall: glShadeModel(GL SMOOTH)

m How i1s color interpolated?

m Think of a plane equation to computer each color component
(say red) as a function of (x,y)

m Just done for samples positions within the triangle

" "n__
redness"=A _x+B _,yv+C,

r r

Setup Plane Equation

= Setup plane equation to solve for “red” as a

function of (x,y)

Setup system of
equations

Solve for plane

equation coefficients
A,B,C

1
[~
N
3.
]

.2 \E
[

L

Mx
N

X

s

M
N

L

y

2/

y

L red
M red

Ared

B red

_Nred

1L Cred

Do the same for green, blue, and alpha (opacity)...

red

red

red

More Intuitive Way to Interpolate

m Barycentric coordinates

N
Area(PMN) ,

Area(LMN)

Area(LPNY) B
Area(LMN)

Area(LMBR) y
Area(LMN)

Note: a+B+vy=0
I M by construction

attribute(P) = axattribute(L) + Pxattribute(M) + yXattribute(N)

W/ Hardware Triangle Rendering Rates

® Top GPUs can setup over a billion triangles
per second for rasterization

® Triangle setup & rasterization 1s just one of
the (many, many) computation steps in
GPU rendering

Remaining Steps

® Depth interpolation
m Color update
® Scan-out to the display

m Next time...

NS A~ \¢ :\

W7 Programming tips

m 3D graphics, whether OpenGL or Direct3D
or any other API, can be frustrating

® You write a bunch of code and the result 1s

Nothing but black window, where did your
rendering go??

Things to Try

Set your clear color to something other than black!
m [t is easy to draw things black accidentally so don’ t make black the clear color
m But black is the initial clear color
Did you draw something for one frame, but the next frame draws nothing?
® Are you using depth buffering? Did you forget to clear the depth buffer?
Remember there are near and far clip planes so clipping in Z, not just X & Y
Have you checked for glGetError?
m (Call glGetError once per frame while debugging so you can see errors that occur
m For release code, take out the glGetError calls

Not sure what state you are in?

m Use glGetlntegerv or glGetFloatv or other query functions to make sure that
OpenGL’ s state is what you think it is

Use glutSwapBuffers to flush your rendering and show to the visible window
m Likewise glFinish makes sure all pending commands have finished

Try reading
m http://www.slideshare.net/Mark Kilgard/avoiding-19-common-opengl-pitfalls
m This is well worth the time wasted debugging a problem that could be avoided

Next Lecture

® Finish OpenGL pipeline
® Transforms and Graphics Math

m [nterpolation, vector math, and number representations for
computer graphics

20 N
Y I)
| F i s
13 35 AV
/‘;3;{' v sl
;:A;i \g S _ﬂ‘;,a)
"\ \ B/ ¢/ %
N\ W/
oy

m Presentation approach and figures from
= David Luebke [2003]
m Brandon Lloyd [2007]

m Geometric Algebra for Computer Science
[Dorst, Fontijne, Mann]

mvia Mark Kilgard

