Intro to OpenGL 111

Don Fussell
Computer Science Department

The Unmiversity of Texas at Austin

o gmmEmESSSSE

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Where are we?

m Continuing the OpenGL basic pipeline

OpenGL API Example

glShadeModel(GL _SMOOTH); // smooth color interpolation
glEnable(GL DEPTH TEST); // enable hidden surface removal

glClear(GL _COLOR_BUFFER BIT|GL DEPTH BUFFER BIT);

glBegin(GL TRIANGLES); // every 3 vertexes makes a triangle
glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
glVertex31(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
olVertex3£(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

glColordub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
// <<insert code on prior slide here >>
glutSwapBuffers();

b

void main(int argc, char **argv) {
// request double-buffered color window with depth buffer
glutlnitDisplayMode(GLUT RGBA | GLUT DOUBLE | GLUT DEPTH);
glutlnit(&argc, argv);
glutCreateWindow(“simple triangle”);
glutDisplayFunc(display); // function to render window
glutMainLoop();

Rasterization

| Application |

m [ast time we covered !
| Vertex batching & assembly |

how rasterization 1s

done. Lots of linear m
interpolation in special- ;

purpose hardware, so |NDC to window space |
1t’s fast. '

| Rasterization |

!

| Fragment shading |

v

| Depth testing |<—> Depth buffer

v

NN |C010r update I—> Framebuffer

Sitmple Fragment Shading

m We also talked a little about | Application |
fragment shading, that is, l
the simple interpolated color | Vertex batching & assembly |
shading that can be done in I_‘_I
the rasterizer. There’s much Chplpmg

| NDC to window space |
v

| Rasterization |

!

| Fragment shading |

v

more to come.

| Depth testing |<—> Depth buffer

v

|C010r update |—> Framebuffer

2, Color Interpolation

® Our simple triangle 1s drawn with smooth color
interpolation

m Recall: glShadeModel(GL SMOOTH)

m How i1s color interpolated?

m Think of a plane equation to computer each color component
(say red) as a function of (x,y)

m Just done for samples positions within the triangle

" "n__
redness"=A _x+B _,yv+C,

r r

Barycentric Coordinates

Area(PMN) ,
Area(LMN)

Area(LPNY) B
Area(LMN)

Area(LMB) y
Area(LMN)

Note: a+B+vy=0
I M by construction

attribute(P) = axattribute(L) + Pxattribute(M) + yXattribute(N)

W/ Hardware Triangle Rendering Rates

® Top GPUs can setup over a billion triangles
per second for rasterization

® Triangle setup & rasterization 1s just one of
the (many, many) computation steps in
GPU rendering

1 A Simplified Graphics Pipeline

| Application |

!

| Vertex batching & assembly |

| Clipping |
!

| NDC to window space |
v

En.sure closer | Rasterization |
objects obscure |

(hide) more :
distant objects |Fragment shading |

. v
4' Depth testing |<—> Depth buffer

v
|Color update |—> Framebuffer

Interpolating Window Space Z

® Plane equation coefficients (A, B, C)
generated by multiplying inverse matrix by
vector of per-vertex attributes

= & 7L 1[4
M, M, 1| |[M_ |=|B,
N, N, 1| |N. | |C,

Sitmple Triangle Vertex Depth

® Assume glViewport(0,0,500,500) has been called
® And glDepthRange(0,1)

L=(50, 450, 0.65) N=(450,450,0.4)

L =0.65
M, = 0.40
N, = 0.40

M=(250,50,0.4)

m Substitute per-vertex (Xx,y) and Z values for
the L, M, and N vertexes

50 450 177170.651 A1 a- 00006
250 50 1| |04
450 450 1 0.4 C | 7009062

I
o

B, =0.0003125

Complete Z plane equation

Z(x,y) = -0.000625%x + 0.0003125*y + 0.540625

Depth Buffer Algorithm

m Simple, brute force
m Every color sample in framebuffer has corresponding depth sample
m Discrete, solves occlusion in pixel space
® Memory intensive, but fast for hardware

m Basic algorithm
m Clear the depth buffer to its “maximum far” value (generally 1.0)
® Interpolate fragment’ s Z
m Read fragment’ s corresponding depth buffer sample Z value
m [f interpolated Z is less than (closer) than Z from depth buffer

m Then replace the depth buffer Z with the fragment’ s Z

® And also allow the fragment’ s shaded color to update the
corresponding color value in color buffer

m Otherwise discard fragment
m Do not update depth or color buffer

Depth Buffer Example

m Fragment gets rasterized

® Fragment's Z value is
interpolated

m Resulting Z value 1s 0.65

m Read the corresponding
pixel's Z value
m Reads the value 0.8

m Evaluate depth function
m 0.65 GL_LESS 0.8 1s true

m So 0.65 replaces 0.8 in the
depth buffer

m Second primitive
rasterizes same pixel

® Fragment's Z value is
interpolated

m Resulting Z value 1s 0.72

m Read the corresponding
pixel’'s Z value

m Reads the value 0.65

m Evaluate depth function
= 0.72 GL LESS 0.65 is false

m So the fragment s depth

value and color value are
discarded

Depth Test Operation

fragment |O_I_I%
depth
‘0.65<O.1 ‘0.65<O.1%mest
p ixel depth test
depth 0.65

Depth-tested Z or depth values
3D scene white = 1.0 (far), black = 0.0 (near)

OpenGL API for Depth Testing

®m Simple to use

m Most applications just “enable” depth testing and hidden surfaces are removed
m Enable it: glEnable(GL DEPTH TEST)
m Disabled by default
m Must have depth buffer allocated for it to work
= Example: glutlnitDisplayMode(GLUT RGBA | GLUT DOUBLE | GLUT DEPTH)
®m More control

m Clearing the depth buffer
m glClear(GL DEPTH BUFFER BIT | otherBits)
m glClearDepth(zvalue)
m Initial value is 1.0, the maximum Z value in the depth buffer
m glDepthFunc(zfunc)

m zfunc is one of GL_LESS, GL_ GREATER, GL_EQUAL, GL GEQUAL, GL LEQUAL,
GL ALWAYS, GL NEVER, GL NOTEQUAL

m Initial value is GL LESS
m glDepthMask(boolean)
m True means write depth value if depth test passes; if false, don’t write
m Initial value is GL. TRUE
m glDepthRange
m Maps NDC Z values to window-space Z values
m Initially [0,1], mapping to the entire available depth range

Not Just for View Occlusion
Depth Buffers also Useful for Shadow Generation

Without Shadows Projected Shadow Map With Shadows

7

Light' s View Light’ s View Depth

WJA Simplified Graphics Pipeline

| Application |

!

| Vertex batching & assembly |

| Clipping |
!

| NDC to window space |
v

Write shaded | Rasterization |
color to color buffer ;

| Fragment shading |

v

| Depth testing |<—> Depth buffer

v
Color update |—> Framebuffer

Next Lecture

m Graphics Math, Transforms

m [nterpolation, vector math, and number representations for
computer graphics

NS A~ \¢ :\

W7 Programming tips

m 3D graphics, whether OpenGL or Direct3D
or any other API, can be frustrating

® You write a bunch of code and the result 1s

Nothing but black window, where did your
rendering go??

Things to Try

Set your clear color to something other than black!
m [t is easy to draw things black accidentally so don’ t make black the clear color
m But black is the initial clear color
Did you draw something for one frame, but the next frame draws nothing?
® Are you using depth buffering? Did you forget to clear the depth buffer?
Remember there are near and far clip planes so clipping in Z, not just X & Y
Have you checked for glGetError?
m (Call glGetError once per frame while debugging so you can see errors that occur
m For release code, take out the glGetError calls

Not sure what state you are in?

m Use glGetlntegerv or glGetFloatv or other query functions to make sure that
OpenGL’ s state is what you think it is

Use glutSwapBuffers to flush your rendering and show to the visible window
m Likewise glFinish makes sure all pending commands have finished

Try reading
m http://www.slideshare.net/Mark Kilgard/avoiding-19-common-opengl-pitfalls
m This is well worth the time wasted debugging a problem that could be avoided

20 N
Y I)
| F i s
13 35 AV
/‘;3;{' v sl
;:A;i \g S _ﬂ‘;,a)
"\ \ B/ ¢/ %
N\ W/
oy

m Presentation approach and figures from
= David Luebke [2003]
m Brandon Lloyd [2007]

m Geometric Algebra for Computer Science
[Dorst, Fontijne, Mann]

mvia Mark Kilgard

