
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Intro to OpenGL III

Don Fussell
Computer Science Department

The University of Texas at Austin

Where are we?

 Continuing the OpenGL basic pipeline

OpenGL API Example

glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES); // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

GLUT API Example

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
 // << insert code on prior slide here >>
 glutSwapBuffers();
}
void main(int argc, char **argv) {
 // request double-buffered color window with depth buffer
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
 glutInit(&argc, argv);
 glutCreateWindow(“simple triangle”);
 glutDisplayFunc(display); // function to render window
 glutMainLoop();
}

Rasterization

 Last time we covered
how rasterization is
done. Lots of linear
interpolation in special-
purpose hardware, so
it’s fast.

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Simple Fragment Shading
  We also talked a little about
fragment shading, that is,
the simple interpolated color
shading that can be done in
the rasterizer. There’s much
more to come.

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Color Interpolation
  Our simple triangle is drawn with smooth color
interpolation

Recall: glShadeModel(GL_SMOOTH)

  How is color interpolated?
Think of a plane equation to computer each color component
(say red) as a function of (x,y)

  Just done for samples positions within the triangle

redredred CyBxAredness ++=""

Barycentric Coordinates

L M

N

P

Area(PMN)
Area(LMN)

 = α

Area(LPN)
Area(LMN)

 = β

Area(LMP)
Area(LMN)

 = γ

 Note: α + β + γ = 0
by construction

attribute(P) = α×attribute(L) + β×attribute(M) + γ×attribute(N)

Hardware Triangle Rendering Rates

 Top GPUs can setup over a billion triangles
per second for rasterization
 Triangle setup & rasterization is just one of
the (many, many) computation steps in
GPU rendering

A Simplified Graphics Pipeline

Ensure closer
objects obscure
(hide) more
distant objects

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Interpolating Window Space Z

 Plane equation coefficients (A, B, C)
generated by multiplying inverse matrix by
vector of per-vertex attributes

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

z

z

z

z

z

yx

yx

yx

C
B
A

N
M
L

NN
MM
LL 1

1
1
1

CS 354

Simple Triangle Vertex Depth

  Assume glViewport(0,0,500,500) has been called
And glDepthRange(0,1)

L=(50, 450, 0.65) N=(450,450,0.4)

M=(250,50,0.4)

Lz = 0.65
Mz = 0.40
Nz = 0.40

Interpolating Window Space Z

 Substitute per-vertex (x,y) and Z values for
the L, M, and N vertexes

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

z

z

C
B
A

4.0
4.0
65.01

1450450
150250
145050

Z(x,y) = -0.000625*x + 0.0003125*y + 0.540625

Az= -0.000625

Bz = 0.0003125

Cz = 0.540625

Complete Z plane equation

Depth Buffer Algorithm
  Simple, brute force

Every color sample in framebuffer has corresponding depth sample
Discrete, solves occlusion in pixel space
Memory intensive, but fast for hardware

  Basic algorithm
Clear the depth buffer to its “maximum far” value (generally 1.0)
Interpolate fragment’s Z
Read fragment’s corresponding depth buffer sample Z value
If interpolated Z is less than (closer) than Z from depth buffer

 Then replace the depth buffer Z with the fragment’s Z
 And also allow the fragment’s shaded color to update the
corresponding color value in color buffer

 Otherwise discard fragment
 Do not update depth or color buffer

Depth Buffer Example
  Fragment gets rasterized
  Fragment’s Z value is
interpolated

Resulting Z value is 0.65
  Read the corresponding
pixel’s Z value

Reads the value 0.8
  Evaluate depth function

0.65 GL_LESS 0.8 is true
So 0.65 replaces 0.8 in the
depth buffer

  Second primitive
rasterizes same pixel
  Fragment’s Z value is
interpolated

Resulting Z value is 0.72
  Read the corresponding
pixel’s Z value

Reads the value 0.65
  Evaluate depth function

0.72 GL_LESS 0.65 is false
So the fragment’s depth
value and color value are
discarded

Depth Test Operation

0.8

0.65

time

pixel
depth

fragment
depth

0.65<0.8
is true

0.65

0.72

0.65<0.8
is false

0.65
depth test
passes

depth test
fails

Depth Buffer Visualized

Z or depth values
white = 1.0 (far), black = 0.0 (near)

Depth-tested
3D scene

OpenGL API for Depth Testing
  Simple to use

Most applications just “enable” depth testing and hidden surfaces are removed
Enable it: glEnable(GL_DEPTH_TEST)

  Disabled by default
Must have depth buffer allocated for it to work

  Example: glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH)

  More control
Clearing the depth buffer

glClear(GL_DEPTH_BUFFER_BIT | otherBits)
glClearDepth(zvalue)

  Initial value is 1.0, the maximum Z value in the depth buffer
glDepthFunc(zfunc)

zfunc is one of GL_LESS, GL_GREATER, GL_EQUAL, GL_GEQUAL, GL_LEQUAL,
GL_ALWAYS, GL_NEVER, GL_NOTEQUAL
  Initial value is GL_LESS

glDepthMask(boolean)
  True means write depth value if depth test passes; if false, don’t write
  Initial value is GL_TRUE

glDepthRange
  Maps NDC Z values to window-space Z values
  Initially [0,1], mapping to the entire available depth range

Not Just for View Occlusion
Depth Buffers also Useful for Shadow Generation

Without Shadows With Shadows Projected Shadow Map

Light’s View Light’s View Depth

A Simplified Graphics Pipeline

Write shaded
color to color buffer

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Next Lecture
  Graphics Math, Transforms

Interpolation, vector math, and number representations for
computer graphics

Programming tips
 3D graphics, whether OpenGL or Direct3D
or any other API, can be frustrating

You write a bunch of code and the result is

Nothing but black window; where did your
rendering go??

Things to Try
  Set your clear color to something other than black!

It is easy to draw things black accidentally so don’t make black the clear color
But black is the initial clear color

  Did you draw something for one frame, but the next frame draws nothing?
Are you using depth buffering? Did you forget to clear the depth buffer?

  Remember there are near and far clip planes so clipping in Z, not just X & Y
  Have you checked for glGetError?

Call glGetError once per frame while debugging so you can see errors that occur
For release code, take out the glGetError calls

  Not sure what state you are in?
Use glGetIntegerv or glGetFloatv or other query functions to make sure that
OpenGL’s state is what you think it is

  Use glutSwapBuffers to flush your rendering and show to the visible window
Likewise glFinish makes sure all pending commands have finished

  Try reading
http://www.slideshare.net/Mark_Kilgard/avoiding-19-common-opengl-pitfalls
This is well worth the time wasted debugging a problem that could be avoided

Thanks

 Presentation approach and figures from
David Luebke [2003]
Brandon Lloyd [2007]
Geometric Algebra for Computer Science
[Dorst, Fontijne, Mann]
via Mark Kilgard

