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Position and Orientation 

 The position of an object can be represented 
as a translation of the object from the origin 
 The orientation of an object can be 
represented as a rotation of an object from 
its original unrotated orientation. 
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Position 

 Cartesian coordinates (x,y,z) are an easy 
and natural means of representing a position 
in 3D space 
 Of course, there are many other frames such 
as polar notation (r,θ,φ) 



Orientation 

 Several ways to represent a rotation: 
Euler angles 
Rotation vectors (axis/angle) 
3x3 matrices 
Quaternions 
… 



Direct Matrix Representation 

 Matrices are how we apply rotations to geometric 
data, so generally orientation representations need 
to be converted to matrix form to actually perform 
the rotation specified 
 Why consider other representations? 

Numerical issues 
Storage issues 
User interaction issues 
Interpolation issues 



Direct Matrix Representation 

  Recall that an orthonormal matrix performs an arbitrary 
rotation. 
  Given 3 mutually orthogonal unit vectors: 

 

  A rotation of a onto the x axis, b onto the y axis, and c onto 
the z axis is performed by: 

 

a = b× c b = c×a c = a×b
a = b = c = 1

ax ay az 0

bx by bz 0

cx cy cz 0

0 0 0 1
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Euler’s Theorem 

 Euler’s Theorem: Any two independent 
orthonormal n-dimensional coordinate frames can 
be related by a sequence of no more than n 
rotations about basis vectors (coordinate axes) 
such that consecutive rotations are about distinct 
basis vectors. 
 Leonhard Euler (1707-1783) 
 Nothing to do with Euler integration, Newton-
Euler dynamics, Euler’s Formula, Euler equations, 
Euler characteristic… 



Euler Angles 

  We can represent an orientation in 3-d Euclidean space 
with 3 numbers 
  Such a sequence of rotations around basis vectors is called 
an Euler Angle Sequence 
  We’ll normally use the sequence ijk (x y z) 
  But we could also use: 

 
 ikj   iji   iki   jik 
 jki   jij   jkj   kij 
 kji   kik   kjk 



Matrix for Euler Angles 

Matrix for our canonical ijk ordering: 

RxRyRz =

1 0 0 0
0 cosx sin x 0
0 −sin x cosx 0
0 0 0 1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

cosy 0 −sin y 0

0 1 0 0
sin y 0 cosy 0

0 0 0 1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

cosz sinz 0 0
−sinz cosz 0 0
0 0 1 0
0 0 0 1
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cycz cysz −sy 0

sxsycz − cxsz sxsysz + cxcz sxcy 0

cxsycz + sxsz cxsysz − sxcz cxcy 0

0 0 0 1
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Local vs. World Coordinates 

 Matrix multiplication is not commutative - the 
order of operations is important 
 Rotations are normally assumed to be relative to 
world coordinate axes, not local object coordinates 
 Reversing the sequence order gives a local object 
coordinate representation 



Vehicle Orientation 

 Generally, for vehicles, it is most convenient to 
rotate in roll (z), pitch (y), and then yaw (x) 
 This is a local coordinate representation 
 Note that it’s the reverse of our canonical world 
coordinate order 
 This is quite intuitive where 

we have a well-defined up 
direction 

x

y

z

front of vehicle



Gimbal Lock 

 A common problem with Euler angles is 
gimbal lock 
 This results when two axes coincide after a 
rotation by some integer multiple of 90o 
about a third axis, resulting in a singularity, 
i.e. a loss of a degree of freedom 
 What is the longitude at the north or south 
pole? 



Interpolating Euler Angles 

 One can simply interpolate between the three 
values independently 
 This will result in the interpolation following a 
different path depending on which of the 12 
schemes you choose 
  Interpolating near the ‘poles’ can be problematic 



Pros and Cons of Euler Angles 

 Pro 
Compact (only 3 numbers) 

 Con 
Do not interpolate in a consistent way (pro or 
con) 
Gimbal lock  
Not simple to concatenate rotations 



Axis/Angle Representation 

 Euler’s Theorem shows that any two orientations 
can be related by a single rotation about some axis 
vector (not necessarily a basis vector) 
 This means that we can represent an arbitrary 
orientation as a rotation about some unit axis 
vector by some angle (4 numbers) 



Axis/Angle Representation 

  Storing an orientation as an axis and an angle uses 4 
numbers, but Euler’s Theorem says that we only need 3 
numbers to represent an orientation 
  Thus there is redundant information, the magnitude of the 
axis vector, in the axis/angle representation,  
  Normalizing the axis vector constrains the extra degree of 
freedom since if we know the vector is unit length, we can 
get its third direction cosine if we know the other two. 



Axis/Angle (OpenGL) Rotation Matrix 

Given arbitrary unit axis vector a=(ax,ay,az) 
and counterclockwise rotation angle θ: 

ax
2 + cθ (1− ax

2 ) axay (1− cθ )+ azsθ axaz (1− cθ )− aysθ 0

axay (1− cθ )− azsθ ay
2 + cθ (1− ay

2 ) ayaz (1− cθ )+ axsθ 0

axaz (1− cθ )+ aysθ ayaz (1− cθ )− axsθ az
2 + cθ (1− az

2 ) 0

0 0 0 1
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Quaternions 

 Quaternions are an extension of complex numbers 
that provide a way of rotating vectors just as 
vectors translate points 
 Discovered by Hamilton in 1843 (and Gauss in 
1819, but he didn’t publish) 
 For graphics, they are most useful as a means of 
representing orientations (rotations) 



Quaternions 

  Quaternions are an extension of complex numbers with 3 
square roots of -1 (ijk) instead of just i 
  The first component is a scalar real number, the other 3 
form a vector in right-handed ijk space 

  or you can write it explicitly as a scalar and a vector 

q = s+ iq1 + jq2 + kq3 i2 = j2 = k2 = ijk = −1where

vq ,s= where v = q1 q2 q3!
"

#
$



Unit Quaternions 

  For representing rotations or orientations, 4 numbers is 
once again 1 too many, so as with axis/angle we use only 
unit length quaternions 

 

 
  These correspond to the set of vectors that form the 
hypersurface of a 4D hypersphere of radius 1 
  The hypersurface is actually a 3D volume in 4D space, but 
it can sometimes be visualized as an extension to the 
concept of a 2D surface on a 3D sphere 

q = s2 + q1
2 + q2

2 + q3
2 =1



Unit Quaternions as Rotations 

 A unit quaternion represents a rotation by an angle 
θ around a unit axis vector a as: 

 

 
 
  If a is unit length, q is too 

q = cosθ
2

ax sin
θ
2

ay sin
θ
2

az sin
θ
2
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or

q = cosθ
2
,asinθ

2



Unit Quaternions as Rotations 

q = s2 + q1
2 + q2

2 + q3
2

= cos2 θ
2
+ ax

2 sin2 θ
2
+ ay

2 sin2 θ
2
+ az

2 sin2 θ
2

= cos2 θ
2
+ sin2 θ

2
ax
2 + ay

2 + az
2( )

= cos2 θ
2
+ sin2 θ

2
a 2 = cos2 θ

2
+ sin2 θ

2
= 1 =1



Conjugation Performs Rotation 
  Quaternions can represent vectors by setting the scalar part 
to 0 (i.e. the axis vector with 0 rotation). 
  This vector (quaternion) needn’t be unit length. 
  Rotate the vector counterclockwise by angle θ about axis a 
by conjugating it with a unit quaternion representing the 
rotation 

where  
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v = 0,v

q = cosθ
2
,asinθ

2
!v = qvq−1 !v = 0, !v

q−1 =
cos−θ

2
,asin −θ

2
q 2 = cosθ

2
,−asinθ

2



Quaternion Multiplication 

  We can perform multiplication on quaternions if we 
expand them into their complex number form 

  If q represents a rotation and q’ represents a rotation, then 
qq’ represents q rotated by q’ 
  This follows very similar rules as matrix multiplication (in 
particular it is not commutative) 

q = s+ iq1 + jq2 + kq3

q !q = s+ iq1 + jq2 + kq3( ) !s + i !q1 + j !q2 + k !q3( )
= s !s − v ⋅ !v , s !v + !s v+ v× v



Quaternion Multiplication 

 Note that, just like complex numbers, two unit 
quaternions multiplied together will result in 
another unit quaternion 
 Multiplication by complex numbers can be 
thought of as a rotation in the complex plane 
 Quaternions extend the planar rotations of 
complex numbers to 3D rotations in space 
 So, in summary, multiplying unit quaternions in a 
particular order results in a unit quaternion that 
does the rotation that is performed by the two 
original rotations in that order. 



Unit Quaternion to Matrix 

1− 2q2
2 − 2q3

2 2q1q 2+2sq 3 2q1q 3−2sq 2 0

2q1q 2−2sq 3 1− 2q1
2 − 2q3

2 2q 2q 3+2sq1 0

2q1q 3+2sq 2 2q 2q 3−2sq1 1− 2q1
2 − 2q2

2 0
0 0 0 1
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 Matrix for unit quaternion: 
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Linear Interpolation 

  If we want to do a linear interpolation between two points 
a and b in normal space 

 
  Lerp(t,a,b) = (1-t)a + (t)b 

 
 where t ranges from 0 to 1 
  This is a (convex) affine combination of points 
  It can of course also be written 

 
  Lerp(t,a,b) = a + t(b-a) 



Spherical Linear Interpolation 

  If we want to interpolate between two points on a 
sphere (or hypersphere), we don’t just want to 
Lerp between them 

  Instead, we will travel across the surface of the 
sphere by following a great arc 



Spherical Linear Interpolation 

 Geometrically, the spherical linear 
interpolation of two unit vectors in N 
dimensional space is given by: 

Slerp(t,a,b) =
sin 1− t( )θ( )

sinθ
a+
sin tθ( )
sinθ

b

where θ = cos−1 a ⋅b( )



Quaternion Interpolation 

  Remember that there are two redundant vectors in 
quaternion space for every unique orientation in 3D space 
  What is the difference between: 

 

  Slerp(t,a,b)    and    Slerp(t,-a,b)  ? 
 
  One of these will travel less than 90 degrees while the 
other will travel more than 90 degrees across the sphere 
  This corresponds to rotating the ‘short way’ or the ‘long 
way’ 
  Usually, we want to take the short way, so we negate one 
of them if their dot product is < 0 



Quaternion Summary 

  Quaternions are 4D vectors that can represent 3D rigid 
body orientations 
  We use unit quaternions for orientations (rotations) 
  Quaternions are more compact than matrices to represent 
rotations/orientations 
  Key operations: 

Quaternion multiplication: faster than matrix multiplication for 
combining rotations 
Quaternion conjugation: faster than matrix vector multiplication 
for performing rotations 
Quaternion to matrix: to combine quaternion rotations with other 
affine transforms 
Slerp: to interpolate between arbitrary orientations 


