

University of Texas at Austin Computer Graphics Fall 2010 Don Fussell

Parametric Representations

- 3 basic representation strategies:
- Explicit: $\mathrm{y}=\mathrm{mx}+\mathrm{b}$
- Implicit: $a x+b y+c=0$
- Parametric: $\mathrm{P}=\mathrm{P}_{0}+\mathrm{t}\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right)$
- Advantages of parametric forms
- More degrees of freedom
- Directly transformable
- Dimension independent
- No infinite slope problems
- Separates dependent and independent variables
- Inherently bounded
- Easy to express in vector and matrix form
- Common form for many curves and surfaces

Algebraic Representation

- All of these curves are just parametric algebraic polynomials expressed in different bases
- Parametric linear curve (in E^{3}) $\quad x=a_{x} u+b_{x}$

$$
\mathbf{p}(u)=\mathbf{a} u+\mathbf{b}
$$

$$
\begin{aligned}
& y=a_{y} u+b_{y} \\
& z=a_{z} u+b_{z}
\end{aligned}
$$

- Parametric cubic curve (in $\left.\mathrm{E}^{3}\right) \quad x=a_{x} u^{3}+b_{x} u^{2}+c_{x} u+d_{x}$

$$
\mathbf{p}(u)=\mathbf{a} u^{3}+\mathbf{b} u^{2}+\mathbf{c} u+\mathbf{d} \quad \begin{array}{ll}
y=a_{y} u^{3}+b_{y} u^{2}+c_{y} u+d_{y} \\
& z=a_{z} u^{3}+b_{z} u^{2}+c_{z} u+d_{z}
\end{array}
$$

- Basis (monomial or power)

$$
\left[\begin{array}{ll}
u & 1
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]
$$

Hermite Curves

■ 12 degrees of freedom (4 3-d vector constraints)

- Specify endpoints and tangent vectors at endpoints

$$
\begin{aligned}
& \mathbf{p}(0)=\mathbf{d} \\
& \mathbf{p}(1)=\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d} \\
& \mathbf{p}^{u}(0)=\mathbf{c} \\
& \mathbf{p}^{u}(1)=3 \mathbf{a}+2 \mathbf{b}+\mathbf{c}
\end{aligned}
$$

- Solving for the coefficients:

$$
\begin{aligned}
& \mathbf{a}=2 \mathbf{p}(0)-2 \mathbf{p}(1)+\mathbf{p}^{u}(0)+\mathbf{p}^{u}(1) \\
& \mathbf{b}=-3 \mathbf{p}(0)+3 \mathbf{p}(1)-2 \mathbf{p}^{u}(0)-\mathbf{p}^{u}(1) \\
& \mathbf{c}=\mathbf{p}^{u}(0) \\
& \mathbf{d}=\mathbf{p}(0)
\end{aligned}
$$

Hermite Curves - Hermite Basis

- Substituting for the coefficients and collecting terms gives

$$
\mathbf{p}(u)=\left(2 u^{3}-3 u^{2}+1\right) \mathbf{p}(0)+\left(-2 u^{3}+3 u^{2}\right) \mathbf{p}(1)+\left(u^{3}-2 u^{2}+u\right) \mathbf{p}^{u}(0)+\left(u^{3}-u^{2}\right) \mathbf{p}^{u}(1)
$$

- Call

$$
\begin{aligned}
& \mathrm{H}_{1}(u)=\left(2 u^{3}-3 u^{2}+1\right) \\
& \mathrm{H}_{2}(u)=\left(-2 u^{3}+3 u^{2}\right) \\
& \mathrm{H}_{3}(u)=\left(u^{3}-2 u^{2}+u\right) \\
& \mathrm{H}_{4}(u)=\left(u^{3}-u^{2}\right)
\end{aligned}
$$

the Hermite blending functions or basis functions

- Then $\mathbf{p}(u)=\mathrm{H}_{1}(u) \mathbf{p}(0)+\mathrm{H}_{2}(u) \mathbf{p}(1)+\mathrm{H}_{3}(u) \mathbf{p}^{u}(0)+\mathrm{H}_{4}(u) \mathbf{p}^{u}(1)$

Hermite Curves - Matrix Form

- Putting this in matrix form $\quad \mathbf{H}=\left[\begin{array}{llll}\mathrm{H}_{1}(u) & \mathrm{H}_{2}(u) & \mathrm{H}_{3}(u) & \mathrm{H}_{4}(u)\end{array}\right]$

$$
=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

$$
=\mathbf{U} \mathbf{M}_{\mathrm{H}}
$$

- \mathbf{M}_{H} is called the Hermite characteristic matrix
- Collecting the Hermite geometric coefficients into a geometry vector \mathbf{B}, we have a matrix formulation for the Hermite curve $\mathbf{p}(u)$

$$
\begin{aligned}
& \mathbf{B}=\left[\begin{array}{c}
\mathbf{p}(0) \\
\mathbf{p}(1) \\
\mathbf{p}^{u}(0) \\
\mathbf{p}^{u}(1)
\end{array}\right] \\
& \mathbf{p}(u)=\mathbf{U M}_{\mathrm{H}} \mathbf{B}
\end{aligned}
$$

Hermite and Algebraic Forms

- \mathbf{M}_{H} transforms geometric coefficients ("coordinates") from the Hermite basis to the algebraic coefficients of the monomial basis

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right] \\
& \mathbf{p}(u)=\mathbf{U A}=\mathbf{U} \mathbf{M}_{\mathrm{H}} \mathbf{B} \\
& \mathbf{A}=\mathbf{M}_{\mathrm{H}} \mathbf{B} \\
& \mathbf{B}=\mathbf{M}_{\mathrm{H}}^{-1} \mathbf{A}
\end{aligned}
$$

$$
\mathbf{M}_{\mathrm{H}}^{-1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]
$$

Cubic Bézier Curves

- Specifying tangent vectors at endpoints isn't always convenient for geometric modeling
- We may prefer making all the geometric coefficients points, let's call them control points, and label them $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}$, and \mathbf{p}_{3}
- For cubic curves, we can proceed by letting the tangents at the endpoints for the Hermite curve be defined by a vector between a pair of control points, so that:

$$
\begin{aligned}
& \mathbf{p}(0)=\mathbf{p}_{0} \\
& \mathbf{p}(1)=\mathbf{p}_{3} \\
& \mathbf{p}^{u}(0)=k_{1}\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \\
& \mathbf{p}^{u}(1)=k_{2}\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)
\end{aligned}
$$

Cubic Bézier Curves

- Substituting this into the Hermite curve expression and rearranging, we get

$$
\begin{array}{r}
\mathbf{p}(u)=\left[\left(2-k_{1}\right) u^{3}+\left(2 k_{1}-3\right) u^{2}-k_{1} u+1\right] \mathbf{p}_{0}+\left[k_{1} u^{3}-2 k_{1} u^{2}+k_{1} u\right] \mathbf{p}_{1} \\
+\left[-k_{2} u^{3}+k_{2} u^{2}\right] \mathbf{p}_{2}+\left[\left(k_{2}-2\right) u^{3}+\left(3-k_{2}\right) u^{2}\right] \mathbf{p}_{3}
\end{array}
$$

- In matrix form, this is

$$
\mathbf{p}(u)=\mathbf{U M}_{\mathrm{B}} \mathbf{P} \quad \mathbf{M}_{\mathrm{B}}=\left[\begin{array}{cccc}
2-k_{1} & k_{1} & -k_{2} & k_{2}-2 \\
2 k_{1}-3 & -2 k_{1} & k_{2} & 3-k_{2} \\
-k_{1} & k_{1} & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \quad \mathbf{P}=\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]
$$

Cubic Bézier Curves

- What values should we choose for k_{1} and k_{2} ?
- If we let the control points be evenly spaced in parameter space, then \mathbf{p}_{0} is at $u=0, \mathbf{p}_{1}$ at $u=1 / 3, \mathbf{p}_{2}$ at $u=2 / 3$ and \mathbf{p}_{3} at $u=1$. Then

$$
\begin{aligned}
& \mathbf{p}^{u}(0)=\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) /(1 / 3-0)=3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \\
& \mathbf{p}^{u}(1)=\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right) /(1-2 / 3)=3\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)
\end{aligned}
$$

and $k_{1}=k_{2}=3$, giving a nice symmetric characteristic matrix:

- So $\quad\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$

$$
\mathbf{p}(u)=\left(-u^{3}+3 u^{2}-3 u+1\right) \mathbf{p}_{0}+\left(3 u^{3}-6 u^{2}+3 u\right) \mathbf{p}_{1}+\left(-3 u^{3}+3 u^{2}\right) \mathbf{p}_{2}+u^{3} \mathbf{p}_{3}
$$

General Bézier Curves

- This can be rewritten as

$$
\mathbf{p}(u)=(1-u)^{3} \mathbf{p}_{0}+3 u(1-u)^{2} \mathbf{p}_{1}+3 u^{2}(1-u) \mathbf{p}_{2}+u^{3} \mathbf{p}_{3}=\sum_{i=0}^{3}\binom{3}{i}^{i}(1-u)^{3-i} \mathbf{p}_{i}
$$

- Note that the binomial expansion of

$$
(u+(1-u))^{n} \text { is } \quad \sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

- This suggests a general formula for Bézier curves of arbitrary degree

$$
\mathbf{p}(u)=\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i} \mathbf{p}_{i}
$$

General Bézier Curves

- The binomial expansion gives the Bernstein basis (or Bézier blending functions) $\mathrm{B}_{i, n}$ for arbitrary degree Bézier curves

$$
\begin{aligned}
& \mathbf{p}(u)=\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i} \mathbf{p}_{i} \\
& \mathrm{~B}_{i, n}(u)=\binom{n}{i} u^{i}(1-u)^{n-i} \\
& \mathbf{p}(u)=\sum_{i=0}^{n} \mathrm{~B}_{i, n}(u) \mathbf{p}_{i}
\end{aligned}
$$

- Of particular interest to us (in addition to cubic curves):
- Linear: $\mathbf{p}(u)=(1-u) \mathbf{p}_{0}+u \mathbf{p}_{1}$
- Quadratic: $\mathbf{p}(u)=(1-u)^{2} \mathbf{p}_{0}+2 u(1-u) \mathbf{p}_{1}+u^{2} \mathbf{p}_{2}$

Bézier Curve Properties

- Interpolates end control points, not middle ones
- Stays inside convex hull of control points
- Important for many algorithms
- Because it's a convex combination of points, i.e. affine with positive weights
- Variation diminishing
- Doesn’ t " wiggle" more

Rendering Bézier Curves

- We can obtain a point on a Bézier curve by just evaluating the function for a given value of u
- Fastest way, precompute $\mathbf{A}=\mathbf{M}_{\mathrm{B}} \mathbf{P}$ once control points are known, then evaluate $\mathbf{p}\left(u_{i}\right)=\left[u_{i}^{3} u_{i}^{2} u_{i} 1\right] \mathbf{A}, i=0,1,2, \ldots, n$ for n fixed increments of u
- For better numerical stability, take e.g. a quadratic curve (for simplicity) and rewrite

$$
\begin{aligned}
\mathbf{p}(u) & =(1-u)^{2} \mathbf{p}_{0}+2 u(1-u) \mathbf{p}_{1}+u^{2} \mathbf{p}_{2} \\
& =(1-u)\left[(1-u) \mathbf{p}_{0}+u \mathbf{p}_{1}\right]+u\left[(1-u) \mathbf{p}_{1}+u \mathbf{p}_{2}\right]
\end{aligned}
$$

- This is just a linear interpolation of two points, each of which was obtained by interpolating a pair of adjacent control points

de Casteljau Algorithm

- This hierarchical linear interpolation works for general Bézier curves, as given by the following recurrence

$$
\mathbf{p}_{i, j}=(1-u) \mathbf{p}_{i, j-1}+u \mathbf{p}_{i+1, j-1}\left\{\begin{array}{l}
i=0,1,2, \ldots, n-j \\
j=1,2, \ldots, n
\end{array}\right.
$$

where $\mathbf{p}_{i, 0} i=0,1,2, \ldots, n$ are the control points for a degree n Bézier curve and $\mathbf{p}_{0, n}=\mathbf{p}(u)$

- For efficiency this should not be implemented recursively.
- Useful for point evaluation in a recursive subdivision algorithm to render a curve since it generates the control points for the subdivided curves.

de Casteljau Algorithm

de Casteljau Algorithm

de Casteljau Algorithm

$$
\begin{aligned}
& \mathbf{r}_{0}(u)=(1-u) \mathbf{q}_{0}(u)+u \mathbf{q}_{1}(u) \\
& \mathbf{r}_{1}(u)=(1-u) \mathbf{q}_{1}(u)+u \mathbf{q}_{2}(u)
\end{aligned}
$$

de Casteljau Algorithm

de Casteljau algorihm

Drawing Bézier Curves

■ How can you draw a curve?
■ Generally no low-level support for drawing curves

- Can only draw line segments or individual pixels

■ Approximate the curve as a series of line segments

- Analogous to tessellation of a surface
- Methods:
- Sample uniformly

■ Sample adaptively

- Recursive Subdivision

Uniform Sampling

- Approximate curve with n line segments
- n chosen in advance
- Evaluate $\mathbf{p}_{i}=\mathbf{p}\left(u_{i}\right)$ where $u_{i}=\frac{i}{n} \quad i=0,1, \ldots, n$
- For an arbitrary cubic curve

$$
\mathbf{p}_{i}=\mathbf{a}\left(i^{3} / n^{3}\right)+\mathbf{b}\left(i^{2} / n^{2}\right)+\mathbf{c}(i / n)+\mathbf{d}
$$

- Connect the points with lines

■ Too few points?

- Bad approximation

- "Curve" is faceted
- Too many points?
- Slow to draw too many line segments
- Segments may draw on top of each other

Adaptive Sampling

■ Use only as many line segments as you need

- Fewer segments needed where curve is mostly flat
- More segments needed where curve bends
- No need to track bends that are smaller than a pixel
- Various schemes for sampling, checking results, deciding whether to sample more

■ Or, use knowledge of curve structure:
■ Adapt by recursive subdivision

Recursive Subdivision

- Any cubic curve segment can be expressed as a Bézier curve
- Any piece of a cubic curve is itself a cubic curve
- Therefore:
- Any Bézier curve can be broken up into smaller Bézier curves

■ But how...?

de Casteljau subdivision

Adaptive subdivision algorithm

- Use de Casteljau construction to split Bézier segment
- Examine each half:
- If flat enough: draw line segment

■ Else: recurse

- To test if curve is flat enough

■ Only need to test if hull is flat enough
■ Curve is guaranteed to lie within the hull

- e.g., test how far the handles are from a straight segment
\square If it' s about a pixel, the hull is flat

Composite Curves

- Hermite and Bézier curves generalize line segments to higher degree polynomials. But what if we want more complicated curves than we can get with a single one of these? Then we need to build composite curves, like polylines but curved.
- Continuity conditions for composite curves
- C^{0} - The curve is continuous, i.e. the endpoints of consecutive curve segments coincide
- C^{1} - The tangent (derivative with respect to the parameter) is continuous, i.e. the tangents match at the common endpoint of consecutive curve segments
- C^{2} - The second parametric derivative is continuous, i.e. matches at common endpoints
- G^{0} - Same as C^{0}
- G^{1} - Derivatives wrt the coordinates are continuous. Weaker than C^{1}, the tangents should point in the same direction, but lengths can differ.
- G^{2} - Second derivatives wrt the coordinates are continuous
- ...

Composite Bézier Curves

- $\mathrm{C}^{0}, \mathrm{G}^{0}$ - Coincident end control points
- $\mathrm{C}^{1}-\mathbf{p}_{3}-\mathbf{p}_{2}$ on first curve equals $\mathbf{p}_{1}-\mathbf{p}_{0}$ on second
- $\mathrm{G}^{1}-\mathbf{p}_{3}-\mathbf{p}_{2}$ on first curve proportional to $\mathbf{p}_{1}-\mathbf{p}_{0}$ on second
- $\mathrm{C}^{2}, \mathrm{G}^{2}$ - More complex, use B-splines to automatically control continuity across curve segments

Polar form for Bézier Curves

- A much more useful point labeling scheme
- Start with knots, "interesting" values in parameter space
- For Bézier curves, parameter space is normally [0, 1], and the knots are at 0 and 1 .

- Now build a knot vector, a non-decreasing sequence of knot values.
- For a degree n Bézier curve, the knot vector will have $n 0$'s followed by $n 1$'s $[0,0, \ldots, 0,1,1, \ldots, 1]$
- Cubic Bézier knot vector [0,0,0,1,1,1]
- Quadratic Bézier knot vector [0,0,1,1]
- Polar labels for consecutive control points are sequences of n knots from the vector, incrementing the starting point by 1 each time
- Cubic Bézier control points: $\mathbf{p}_{0}=\mathbf{p}(0,0,0), \mathbf{p}_{1}=\mathbf{p}(0,0,1)$,

$$
\mathbf{p}_{2}=\mathbf{p}(0,1,1), \mathbf{p}_{3}=\mathrm{p}(1,1,1)
$$

■ Quadratic Bézier control points: $\mathbf{p}_{0}=\mathbf{p}(0,0), \mathbf{p}_{1}=\mathbf{p}(0,1), \mathbf{p}_{2}=\mathbf{p}(1,1)$

Polar form rules

- Polar values are symmetric in their arguments, i.e. all permutations of a polar label are equivalent. $\mathbf{p}(0,0,1)=\mathbf{p}(0,1,0)=\mathbf{p}(1,0,0)$, etc.
- Given $\mathbf{p}\left(u_{1}, u_{2}, \ldots, u_{n-1}, a\right)$ and $\mathbf{p}\left(u_{1}, u_{2}, \ldots, u_{n-1}, b\right)$, for any value c we can compute

$$
\mathbf{p}\left(u_{1}, u_{2}, \ldots, u_{n-1}, c\right)=\frac{(b-c) \mathbf{p}\left(u_{1}, u_{2}, \ldots, u_{n-1}, a\right)+(c-a) \mathbf{p}\left(u_{1}, u_{2}, \ldots, u_{n-1}, b\right)}{b-a}
$$

That is, $\mathbf{p}\left(u_{1}, u_{2}, \ldots, u_{n-1}, c\right)$ is an affine combination of

$$
\mathbf{p}\left(u_{1}, u_{2}, \ldots, u_{n-1}, a\right) \text { and } \mathbf{p}\left(u_{1}, u_{2}, \ldots, u_{n-1}, b\right)
$$

Examples: $\quad \mathbf{p}(0, u, 1)=(1-u) \mathbf{p}(0,0,1)+u \mathbf{p}(0,1,1)$

$$
\begin{aligned}
& \mathbf{p}(0, u)=\frac{(4-u) \mathbf{p}(0,2)+(u-2) \mathbf{p}(0,4)}{2} \\
& \mathbf{p}(1,2,3, u)=\frac{\left(u_{2}-u\right) \mathbf{p}\left(2,1,3, u_{1}\right)+\left(u-u_{1}\right) \mathbf{p}\left(3,2,1, u_{2}\right)}{u_{2}-u_{1}}
\end{aligned}
$$

de Casteljau in polar form

Composite curves in polar form

- Suppose we want to glue two cubic Bézier curves together in a way that automatically guarantees C^{2} continuity everywhere. We can do this easily in polar form.
- Start with parameter space for the pair of curves
- 1 st curve $[0,1]$, 2nd curve $(1,2]$

- Make a knot vector: [000,1,222]
- Number control points as before:

$$
\mathbf{p}(0,0,0), \mathbf{p}(0,0,1), \mathbf{p}(0,1,2), \mathbf{p}(1,2,2), \mathbf{p}(2,2,2)
$$

- Okay, 5 control points for the two curves, so 3 of them must be shared since each curve needs 4 . That' s what having only 1 copy of knot 1 achieves, and that's what gives us C^{2} continuity at the join point at $u=1$

de Boor algorithm in polar form

Knot vector $=[0,0,0,1,2,2,2]$

Inserting a knot

Knot vector $=[0,0,0,0.5,1,2,2,2]$

Inserting a 2nd knot

$$
\text { Knot vector }=[0,0,0,0.5,0.5,1,2,2,2]
$$

Inserting a 3rd knot to get a point

$$
\text { Knot vector }=[0,0,0,0.5,0.5,0.5,1,2,2,2]
$$

Recovering the Bézier curves

Knot vector $=[0,0,0,1,1,2,2,2]$

Recovering the Bézier curves

Knot vector $=[0,0,0,1,1,1,2,2,2]$

B-Splines

- B-splines are a generalization of Bézier curves that allows grouping them together with continuity across the joints
- The B in B-splines stands for basis, they are based on a very general class of spline basis functions
- Splines is a term referring to composite parametric curves with guaranteed continuity
- The general form is similar to that of Bézier curves

Given $m+1$ values u_{i} in parameter space (these are called knots), a degree $n \mathrm{~B}$-spline curve is given by:

$$
\begin{aligned}
& \mathbf{p}(u)=\sum_{i=0}^{m-n-1} \mathrm{~N}_{i, n}(u) \mathbf{p}_{i} \\
& \mathbf{N}_{i, 0}(u)=\left\{\begin{array}{cc}
1 & u_{i} \leq u<u_{i+1} \\
0 & \text { otherwise }
\end{array}\right. \\
& \mathrm{N}_{i, n}(u)=\frac{u-u_{i}}{u_{i+n}-u_{i}} \mathrm{~N}_{i, n-1}(u)+\frac{u_{i+n+1}-u}{u_{i+n+1}-u_{i+1}} \mathrm{~N}_{i+1, n-1}(u)
\end{aligned}
$$

where $m \geq i+n+1$

Uniform periodic basis

- Let $N(u)$ be a global basis function for our uniform cubic B-splines
- $N(u)$ is piecewise cubic

$$
N(u)= \begin{cases}\frac{1}{6} u^{3} & \text { if } u<1 \\ -\frac{1}{2}(u-1)^{3}+\frac{1}{2}(u-1)^{2}+\frac{1}{2}(u-1)+\frac{1}{6} & \text { if } u<2 \\ \frac{1}{2}(u-2)^{3}-(u-2)^{2}+\frac{2}{3} & \text { if } u<3 \\ -\frac{1}{6}(u-3)^{3}+\frac{1}{2}(u-3)^{2}-\frac{1}{2}(u-3)+\frac{1}{6} & \text { otherwise }\end{cases}
$$

Basis over [0,1]

- Pieces of single basis function associated with 4 overlapping copies for active control points

$$
\begin{aligned}
& N(u)=\left\{\begin{array}{l}
\frac{1}{6} u^{3} \\
-\frac{1}{2} u^{3}+\frac{1}{2} u^{2}+\frac{1}{2} u+\frac{1}{6} \\
\frac{1}{2} u^{3}-u^{2}+\frac{2}{3} \\
-\frac{1}{6} u^{3}+\frac{1}{2} u^{2}-\frac{1}{2} u+\frac{1}{6}
\end{array}\right. \\
& \mathbf{p}(u)= \\
& N_{0}(u) \mathbf{p}_{3}+N_{l}(u) \mathbf{p}_{2}+ \\
& \\
& N_{2}(u) \mathbf{p}_{1}+N_{3}(u) \mathbf{p}_{0}
\end{aligned}
$$

Uniform periodic B-Spline

$$
\begin{aligned}
\mathbf{p}(u)= & \left(-1 / 6 u^{3}+1 / 2 u^{2}-1 / 2 u+1 / 6\right) \mathbf{p}_{0}+ \\
& \left(1 / 2 u^{3}-u^{2}+2 / 3\right) \mathbf{p}_{1}+ \\
& \left(-1 / 2 u^{3}+1 / 2 u^{2}+1 / 2 u+1 / 6\right) \mathbf{p}_{2}+ \\
& \left(1 / 6 u^{3}\right)
\end{aligned}
$$

$$
\mathbf{p}(u)=\frac{1}{6}\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]
$$

Composite B-Spline

Uniform periodic B-Spline

$$
\begin{aligned}
& \text { (1,2,3) } \\
& +\left[1-\frac{3-t}{3}\right] \mathbf{p}(3,1,2) \\
& \frac{3-t}{2} \mathbf{p}(t, 1,2) \\
& \begin{array}{cc}
\frac{4-t}{3} \mathbf{p}(1,2,3) & +\left[1-\frac{3-t}{2}\right] \\
\left.1-\frac{4-t}{3}\right] \mathbf{p}(4,2,3) & \frac{4-t}{2}
\end{array} \\
& \frac{3-t}{1} \mathbf{p}(t, t, 2) \\
& \mathrm{p}(t, t, t) \\
& \begin{array}{r}
\frac{5-t}{3} \mathbf{p}(2,3,4) \\
+\left[1-\frac{5-t}{3}\right] \mathbf{p}(5,3,4)
\end{array} \\
& +\left[1-\frac{3-t}{1}\right] \mathbf{p}(t, t, 3) \\
& +\left[1-\frac{4-t}{2}\right] \mathbf{p}(t, 3,4)
\end{aligned}
$$

Composite B-Spline

Composite B-Spline

Composite B-Spline

Composite B-Spline

