

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

## Reading

■ Recommended:
■Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, A.5.

■ Note: there is an error in Stollnitz, et al., section A.5. Equation A. 3 should read: $■ \mathbf{M V}=\mathbf{V} \Lambda$

## Subdivision curves

Idea:
-repeatedly refine the control polygon

$$
P^{1} \rightarrow P^{2} \rightarrow P^{2} \rightarrow \ldots
$$

- curve is the limit of an infinite process

$$
Q=\lim _{j \rightarrow \infty} P^{j}
$$






## Chaikin's algorithm

■ Chaikin introduced the following "corner-cutting" scheme in 1974:

- Start with a piecewise linear curve
- Insert new vertices at the midpoints (the splitting step)
- Average each vertex with the "next" (clockwise) neighbor (the averaging step)
- Go to the splitting step



## Averaging masks

- The limit curve is a quadratic B-spline!
- Instead of averaging with the nearest neighbor, we can generalize by applying an averaging mask during the averaging step:

$$
r=\left(\ldots, r_{-1}, r_{0}, r_{1}, \ldots\right)
$$

■ In the case of Chaikin's algorithm:

$$
r=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

## Can we generate other B-splines?

- Answer: Yes Lane-Riesenfeld algorithm (1980)
- Use averaging masks from Pascal's triangle:

$$
r=\frac{1}{2^{n}}\left(\binom{n}{0},\binom{n}{1}, \cdots,\binom{n}{n}\right)
$$

- Gives B-splines of degree $n+1$.
- $\mathrm{n}=0$ :

1

- $\mathrm{n}=1$ :

1

- $\mathrm{n}=2$ :



## Subdivide ad nauseum?

■ After each split-average step, we are closer to the limit curve.
■ How many steps until we reach the final (limit) position?

- Can we push a vertex to its limit position without infinite subdivision? Yes!


## One subdivision step

■ Consider the cubic B-spline subdivision mask:

$$
\frac{1}{4}\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)
$$

■ Now consider what happens during splitting and averaging:


## Math for one subdivision step

■ Subdivision mask:

$$
\frac{1}{4}\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)
$$

- One subdivision step:


Split: $\mathbf{a}=\frac{1}{2}(\mathbf{A}+\mathbf{B})$
Average:

$$
\mathbf{c}=\frac{1}{2}(\mathbf{B}+\mathbf{C})
$$

$$
\text { a and } \mathbf{c} \text { do not change }
$$

$$
\mathbf{b}=\frac{1}{4}(\mathbf{a}+2 B+\mathbf{c})=\frac{1}{8}(\mathbf{A}+6 \mathbf{B}+\mathbf{C})
$$

## Consolidated math for one step

- Subdivision mask: $\quad \frac{1}{4}\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)$
- One subdivision step:

- Consolidated math for one subdivision step:


Local subdivision matrix 'S'

## Local subdivision matrix, cont'd

- Tracking the point's value through subdivision:

$$
P_{j}=S P_{j-1}=S \cdot S P_{j-2}=S \cdot S \cdot S P_{j-3}=\cdots=S^{j} P_{0}
$$

- The limit position of the point is then:

$$
P_{\infty}=S^{\infty} P_{0}
$$

- or as we' d say in calculus...

$$
P_{\infty}=\lim _{j \rightarrow \infty} S^{j} P_{0}
$$

■ OK, so how do we apply a matrix an infinite number of times??

## Eigenvectors and eigenvalues

- To solve this problem, we need to look at the eigenvectors and eigenvalues of $\mathbf{S}$. First, a review...
- Let $v$ be a vector such that $\mathbf{S v}=\lambda \mathbf{v}$
- We say that $\mathbf{v}$ is an eigenvector with eigenvalue $\lambda$.
- An $n \times n$ matrix can have $n$ eigenvalues and eigenvectors:

$$
\begin{gathered}
\mathbf{S v _ { 1 }}=\lambda_{1} \mathbf{v}_{1} \\
\vdots \\
\mathbf{S v}_{n}=\lambda_{n} \mathbf{v}_{n}
\end{gathered}
$$

- If the eigenvectors are linearly independent (which means that $\mathbf{S}$ is non-defective), then they form a basis, and we can re-write $P$ in terms of the eigenvectors:

$$
P=\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}
$$

## To infinity, but not beyond...

- So, applying S to P :

$$
P_{1}=S P_{0}=S \sum_{i}^{n} a_{i} v_{i}=\sum_{i}^{n} a_{i} S v_{i}=\sum_{i}^{n} a_{i} \lambda_{i} v_{i}
$$

- Applying it $j$ times:

$$
P_{j}=S^{j} P_{0}=S^{j} \sum_{i}^{n} a_{i} v_{i}=\sum_{i}^{n} a_{i} S^{j} v_{i}=\sum_{i}^{n} a_{i} \lambda_{i}^{\lambda_{i}^{j}} v_{i}
$$

- Let's assume the eigenvalues are non-negative and sorted so that:

$$
\lambda_{1}>\lambda_{2} \geq \lambda_{3} \geq \cdots \geq \lambda_{n} \geq 0
$$

■ Now let $j$ go to infinity: $\quad P_{\infty}=\lim _{j \rightarrow \infty} S^{j} P_{0}=\lim _{j \rightarrow \infty} \sum_{i}^{n} a_{i} \lambda_{i}^{j} v_{i}$

- If $\lambda_{1}>1$, then:
- If $\lambda_{1}<1$, then:
- If $\lambda_{1}=1$, then:


## Evaluation masks

- What are the eigenvalues and eigenvectors of our cubic B-spline subdivision matrix?

$$
\lambda_{1}=1 \quad V_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \lambda_{2}=\frac{1}{2} \quad V_{2}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \quad \lambda_{3}=\frac{1}{4} \quad V_{3}=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right)
$$

- We' re OK!
- But what is the final position?

$$
\begin{aligned}
& P_{\infty}=\lim _{j \rightarrow \infty}\left(a_{1} \lambda_{1}^{j} v_{1}+a_{2} \lambda_{2}^{j} v_{2}+a_{3} \lambda_{3}^{j} v_{3}\right) \\
& P_{\infty}=
\end{aligned}
$$

- Almost done... from earlier we know that we can find ' $a_{i}$ ', we but didn' t give specifics.


## Evaluation masks

- To finish up, we need to compute $a_{1}$.

■ Remember: $\quad P_{0}=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}$

- Rewrite as:

$$
P_{0}=\left[\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
v_{1} & v_{2} & \cdots & v_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\mathbf{V} A
$$

- We need to solve for the vector ' $A$ ' .

$$
A=\mathbf{V}^{-1} P_{0}
$$

for representing the vector $P$ ).
The solution is:

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\cdots & u_{1}^{T} & \cdots \\
\cdots & u_{2}^{T} & \cdots \\
& \vdots & \\
\cdots & u_{n}^{T} & \cdots
\end{array}\right] P_{0}
$$

- Now we can compute the limit position: $\quad P_{\infty}=a_{1}=u_{1}^{T} P_{0}$
- We call $u_{1}$ the evaluation mask.


## Evaluation masks

■ Note that we need not start with the $0^{\text {th }}$ level control points and push them to the limit.

- If we subdivide and average the control polygon $j$ times, we can push the vertices of the refined polygon to the limit as well:

$$
P_{\infty}=S^{\infty} P_{j}=u_{1}^{T} P_{j}
$$

- So far we' ve been looking at math for a subdivision function $\mathrm{f}(x)$.
- For a 2D parametric subdivision curve, $(\mathrm{x}(u), \mathrm{y}(u))$, just apply these formulas separately for the $\mathrm{x}(u)$ and $\mathrm{y}(u)$ functions.


## Recipe for subdivision curves

- The evaluation mask for the cubic B-spline is:

$$
\frac{1}{6}\left(\begin{array}{lll}
1 & 4 & 1
\end{array}\right)
$$

- Now we can cook up a simple procedure for creating subdivision curves:
$■$ Subdivide (split+average) the control polygon a few times. Use the averaging mask.
$■$ Push the resulting points to the limit positions. Use the evaluation mask.


## Derivative of subdiv. function

- What is the tangent to the cubic B-spline function?
- Consider the formula for $P$ again:

$$
\begin{aligned}
& P_{j}=a_{1} \lambda_{1}^{j} v_{1}+a_{2} \lambda_{2}^{j} v_{2}+a_{3} \lambda_{3}^{j} v_{3} \\
& P_{j}=a_{1}(1)^{j}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+a_{2}\left(\frac{1}{2}\right)^{j}\left(\begin{array}{l}
-1 \\
0 \\
1
\end{array}\right)+a_{3}\left(\frac{1}{4}\right)^{j}\left(\begin{array}{l}
2 \\
-1 \\
2
\end{array}\right)
\end{aligned}
$$

Where:

$$
P_{j}=\left[\begin{array}{l}
\text { left } \\
\text { center } \\
\text { right }
\end{array}\right] \quad P^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{\text { center }- \text { left }}{\Delta x}=\lim _{j \rightarrow \infty} \frac{\text { center }- \text { left }}{\frac{1}{2^{j}}}
$$

Derivative is just: $\quad P^{\prime}=\lim _{j \rightarrow \infty}\left(a_{2}\left(\frac{1}{2}\right)^{j} \frac{0+1}{\frac{1}{2^{j}}}\right)=a_{2}=u_{2}^{T} P_{0}$

## Tangent analysis for 2D curve

- What is the tangent to a parametric cubic B-spline 2D curve?
- Using a similar derivation to what we just did for a 1 D function (but omitting details):

$$
\mathbf{t}=\lim _{j \rightarrow \infty} \frac{P_{\text {Center }, j}-P_{\text {Lef }, j}}{\left\|P_{\text {Center }, j}-P_{\text {Left }, j}\right\|}=\frac{u_{2}^{T} P_{0}}{\left\|u_{2}^{T} P_{0}\right\|}
$$

- Thus, we can compute the tangent using the second left eigenvector! This analysis holds for general subdivision curves and gives us the tangent mask.


## Control Point Approximation vs. Interpolation

- Previous subdivision scheme approximated control points. Can we interpolate them?
Yes: DLG interpolating scheme (1987)
- Slight modification to subdivision algorithm:
- splitting step introduces midpoints
- averaging step only changes midpoints
- For DLG (Dyn-Levin-Gregory), use:

$$
r=\frac{1}{16}(-2,5,10,5,-2)
$$




- Since we are only changing the midpoints, the points after the averaging step do not move.

