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Parametric surfaces 



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010   Don Fussell                 2 

Reading 

 Required: 
Watt, 2.1.4, 3.4-3.5. 

 

 Optional 
Watt, 3.6. 
Bartels, Beatty, and Barsky.  An Introduction to 
Splines for use in Computer Graphics and 
Geometric Modeling, 1987. 
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Mathematical surface representations 
!  Explicit   z = f(x,y)  (a.k.a., a “height field”) 

•  what if the curve isn’t a function, like a sphere? 

 
!  Implicit   g(x,y,z) = 0 
 
!  Parametric   S(u,v) = (x(u,v), y(u,v), z(u,v)) 

•  For the sphere: 
       x(u,v) = r cos 2πv sin πu 
       y(u,v) = r sin 2πv sin πu 
       z(u,v) = r cos πu 
 

As with curves, we’ll focus on parametric surfaces. 
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Surfaces of revolution 

  Idea:  rotate a 2D profile curve around an axis. 
  What kinds of shapes can you model this way? 
  Find:  A surface S(u,v) which is radius(z) rotated about the 
z axis. 
  Solution: 

€ 

x = radius(u)cos(v)
y = radius(u)sin(v)
z = u

€ 

u∈ [zmin,zmax ], v ∈ [0,2π ]
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Extruded surfaces 
  Given:  A curve C(u) in the xy-plane: 

  Find:  A surface S(u,v) which is C(u) extruded along the z 
axis. 
  Solution: 

€ 

C(u) =

cx (u)
cy (u)
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x = cx (u)
y = cy (u)
z = v

€ 

u∈ [umin,umax ], v ∈ [zmin,zmax ]
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General sweep surfaces 
  The surface of revolution is a special case of a swept 
surface. 
  Idea:  Trace out surface S(u,v) by moving a profile curve 
C(u) along a trajectory curve T(v). 

  More specifically: 
Suppose that C(u) lies in an (xc,yc) coordinate system with origin 
Oc. 
For every point along T(v), lay C(u) so that Oc coincides with T(v). 
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  The big issue: 
How to orient C(u) as it moves along T(v)? 

  Here are two options: 
1.  Fixed (or static):  Just translate Oc along T(v). 

2.  Moving.  Use the Frenet frame of T(v). 
 Allows smoothly varying orientation. 
  Permits surfaces of revolution, for example. 

Orientation 
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Frenet frames 
  Motivation:  Given a curve T(v), we want to attach a smoothly varying 

coordinate system. 

 

  To get a 3D coordinate system, we need 3 independent direction 
vectors. 

  As we move along T(v), the Frenet frame (t,b,n) varies smoothly. 

€ 

t(v) = normalize[ " T (v)]
b(v) = normalize[ " T (v) × " " T (v)]
n(v) = b(v) × t(v)
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Frenet swept surfaces 
  Orient the profile curve C(u) using the Frenet frame of the trajectory T(v): 

Put C(u) in the normal plane . 
Place Oc on T(v). 
Align xc for C(u) with b. 
Align yc for C(u) with -n. 

  If T(v) is a circle, you get a surface of revolution exactly! 
  What happens at inflection points, i.e., where curvature goes to zero? 
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Variations 
 Several variations are possible: 

Scale C(u) as it moves, possibly using length of T(v) as 
a scale factor. 
Morph C(u) into some other curve         as it moves 
along T(v). 
… 

€ 

C (u)
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Generalizing from Parametric Curves 
  Flashback to curves: 
  We directly defined parametric function 

 f(u), as a cubic polynomial. 

  Why a cubic polynomial? 
  - minimum degree for C2 continuity 

 - “well behaved” 

  Can we do something similar for surfaces? 
Initially, just think of a height field:  height = f(u,v). 
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Cubic patches 
 Cubics curves are good… Let’s extend them in 
the obvious way to surfaces: 
 
 
 
 
 
 
16 terms in this function. 
 
Let’s allow the user to pick the coefficient 
for each of them: 
      

2 3( ) 1f u u u u= + + +

2 3( ) 1g v v v v= + + +

2 2 2 2 3 3( ) ( ) 1 ...f u g v u v uv u v uv vu u v= + + + + + + + + +

3 3
0 1 2 15( ) ( ) ...f u g v c c u c v c u v= + + + +
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Interesting properties 

 What happens if I pick a particular ‘u’? 
 
 
 

 What happens if I pick a particular ‘v’? 
 

 
 
What do these look like graphically on a patch? 

3 3
0 1 2 15( , ) ...f u v c c u c v c u v= + + + +

( , )f u v =

( , )f u v =
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Use control points 
  As before, directly manipulating coefficients is not 
intuitive. 

Instead, directly manipulate control points. 
These control points indirectly set the 
coefficients, using approaches like those 
we used for curves. 
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Tensor product Bézier surface 
  Let’s walk through the steps: 

  Which control points are interpolated by the surface? 
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Matrix form of Bézier surfaces 
  Recall that Bézier curves can be written in terms of the Bernstein 

polynomials: 

  They can also be written in a matrix form: 

  Tensor product surfaces can be written out similarly: 

€ 

p(u) = Bi,n (u) pi
i= 0

n

∑

€ 

p(u) = u3 u2 u 1[ ]
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€ 

p(u) = Bi,n (u)B j ,n (v)
j= 0

n

∑ pi, j
i= 0

n

∑

=UMBPsMB
TVT
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Tensor product B-spline surfaces 
  As with spline curves, we can piece together a sequence of Bézier 

surfaces to make a spline surface.  If we enforce C2 continuity and 
local control, we get B-spline curves: 

treat rows of B as control points to generate Bézier control points in u. 
treat Bézier control points in u as B-spline control points in v. 
treat B-spline control points in v to generate Bézier control points in u. 
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Which B-spline control points are interpolated by the surface? 

Tensor product B-spline surfaces 
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Continuity for surfaces 
Continuity is more complex for surfaces than curves.  Must 

examine partial derivatives at patch boundaries. 
 
G1 continuity refers to tangent plane. 
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Trimmed NURBS surfaces 
  Uniform B-spline surfaces are a special case of NURBS surfaces. 
  Sometimes, we want to have control over which parts of a NURBS 

surface get drawn. 
  For example: 

  We can do this by trimming the u-v domain. 
Define a closed curve in the u-v domain (a trim curve) 
Do not draw the surface points inside of this curve. 

  It’s really hard to maintain continuity in these regions, especially while 
animating. 
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Next class: Subdivision surfaces 

 Topic: 
  How do we extend ideas from subdivision 

 curves to the problem of representing 
 surfaces? 

 Recommended Reading: 
 
  • Stollnitz, DeRose, and Salesin. Wavelets for  
    Computer Graphics: Theory and Applications,  
    1996, section 10.2. 
     [Course reader pp. 262-268]  


