

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Reading

- Required:

■Watt, 2.1.4, 3.4-3.5.

■ Optional
■ Watt, 3.6.

- Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.

Mathematical surface representations

- Explicit $z=\mathrm{f}(x, y)$ (a.k.a., a "height field")
- what if the curve isn' t a function, like a sphere?
- Implicit $\mathrm{g}(x, y, z)=0$

- Parametric $S(u, v)=(x(u, v), y(u, v), z(u, v))$
- For the sphere:

$$
\begin{aligned}
& x(u, v)=r \cos 2 \pi v \sin \pi u \\
& y(u, v)=r \sin 2 \pi v \sin \pi u \\
& z(u, v)=r \cos \pi u
\end{aligned}
$$

As with curves, we'll focus on parametric surfaces.

Surfaces of revolution

- Idea: rotate a 2D profile curve around an axis.
- What kinds of shapes can you model this way?
- Find: A surface $S(u, v)$ which is radius (z) rotated about the z axis.
- Solution: $x=\operatorname{radius}(u) \cos (v)$

$$
\begin{aligned}
& y=\operatorname{radius}(u) \sin (v) \\
& z=u \quad u \in\left[z_{\min }, z_{\max }\right], \quad v \in[0,2 \pi]
\end{aligned}
$$

Extruded surfaces

■ Given: A curve $C(u)$ in the $x y$-plane:

$$
C(u)=\left[\begin{array}{c}
c_{x}(u) \\
c_{y}(u) \\
0 \\
1
\end{array}\right]
$$

- Find: A surface $S(u, v)$ which is $C(u)$ extruded along the z axis.
- Solution:

$$
\begin{aligned}
& x=c_{x}(u) \\
& y=c_{y}(u) \quad u \in\left[u_{\min }, u_{\max }\right], \quad v \in\left[z_{\text {min }}, z_{\max }\right] \\
& z=v
\end{aligned}
$$

General sweep surfaces

- The surface of revolution is a special case of a swept surface.
- Idea: Trace out surface $S(u, v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

- More specifically:
- Suppose that $C(u)$ lies in an $\left(x_{c}, y_{c}\right)$ coordinate system with origin O_{c}.
- For every point along $T(v)$, lay $C(u)$ so that O_{c} coincides with $T(v)$.

Orientation

- The big issue:

■ How to orient $C(u)$ as it moves along $T(v)$?

- Here are two options:

1. Fixed (or static): Just translate O_{c} along $T(v)$.

2. Moving. Use the Frenet frame of $T(v)$.

- Allows smoothly varying orientation.
- Permits surfaces of revolution, for example.

Frenet frames

- Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

- To get a 3D coordinate system, we need 3 independent direction vectors.

$$
\begin{aligned}
\mathbf{t}(v) & =\operatorname{normalize}\left[T^{\prime}(v)\right] \\
\mathbf{b}(v) & =\operatorname{normalize}\left[T^{\prime}(v) \times T^{\prime \prime}(v)\right] \\
\mathbf{n}(v) & =\mathbf{b}(v) \times \mathbf{t}(v)
\end{aligned}
$$

■ As we move along $T(v)$, the Frenet frame ($\mathbf{t}, \mathbf{b}, \mathbf{n}$) varies smoothly.

Frenet swept surfaces

- Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:
- Put $C(u)$ in the normal plane .
- Place O_{c} on $T(v)$.
- Align x_{c} for $C(u)$ with \mathbf{b}.
- Align y_{c} for $C(u)$ with -n.

- If $T(v)$ is a circle, you get a surface of revolution exactly!
- What happens at inflection points, i.e., where curvature goes to zero?

Variations

- Several variations are possible:
- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
■ Morph $C(u)$ into some other curve $\bar{C}(u)$ as it moves along $T(v)$.

■...

Generalizing from Parametric Curves

- Flashback to curves:

We directly defined parametric function
$\mathrm{f}(u)$, as a cubic polynomial.

- Why a cubic polynomial?
- minimum degree for C 2 continuity
- "well behaved"

■ Can we do something similar for surfaces? Initially, just think of a height field: height $=\mathrm{f}(u, v)$.

Cubic patches

Cubics curves are good... Let's extend them in the obvious way to surfaces:

$$
\begin{gathered}
f(u)=1+u+u^{2}+u^{3} \\
g(v)=1+v+v^{2}+v^{3} \\
f(u) g(v)=1+u+v+u v+u^{2}+v^{2}+u v^{2}+v u^{2}+\ldots+u^{3} v^{3}
\end{gathered}
$$

16 terms in this function.
Let's allow the user to pick the coefficient for each of them:

$$
f(u) g(v)=c_{0}+c_{1} u+c_{2} v+\ldots+c_{15} u^{3} v^{3}
$$

Interesting properties

$$
f(u, v)=c_{0}+c_{1} u+c_{2} v+\ldots+c_{15} u^{3} v^{3}
$$

What happens if I pick a particular ' u '?

$$
f(u, v)=
$$

What happens if I pick a particular ' v ' ?

$$
f(u, v)=
$$

What do these look like graphically on a patch?

Use control points

- As before, directly manipulating coefficients is not intuitive.
- Instead, directly manipulate control points.
- These control points indirectly set the coefficients, using approaches like those we used for curves.

Tensor product Bézier surface

- Let's walk through the steps:

Control net

Control polygon at $u=1 / 2$

Control curves in u

Curve at $S(1 / 2, v)$

■ Which control points are interpolated by the surface?

Matrix form of Bézier surfaces

- Recall that Bézier curves can be written in terms of the Bernstein polynomials:

$$
\mathbf{p}(u)=\sum_{i=0}^{n} \mathrm{~B}_{i, n}(u) \mathbf{p}_{i}
$$

- They can also be written in a matrix form:

$$
\mathbf{p}(u)=\left[\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]=\mathbf{U} \mathbf{M}_{\mathrm{B}} \mathbf{P}
$$

- Tensor product surfaces can be written out similarly:

$$
\begin{aligned}
& \mathbf{p}(u)=\sum_{i=0}^{n} \sum_{j=0}^{n} \mathrm{~B}_{i, n}(u) \mathrm{B}_{j, n}(v) \mathbf{p}_{i, j} \\
& =\mathbf{U M}_{\mathrm{B}} \mathbf{P}_{\mathrm{s}} \mathbf{M}_{\mathrm{B}}^{T} \mathbf{V}^{T}
\end{aligned}
$$

Tensor product B-spline surfaces

- As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^{2} continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.

Tensor product B-spline surfaces

Which B-spline control points are interpolated by the surface?

Continuity for surfaces

Continuity is more complex for surfaces than curves. Must examine partial derivatives at patch boundaries.
G^{1} continuity refers to tangent plane.

Trimmed NURBS surfaces

- Uniform B-spline surfaces are a special case of NURBS surfaces.
- Sometimes, we want to have control over which parts of a NURBS surface get drawn.
- For example:

- We can do this by trimming the $u-v$ domain.
- Define a closed curve in the $u-v$ domain (a trim curve)
- Do not draw the surface points inside of this curve.
- It's really hard to maintain continuity in these regions, especially while animating.

Next class: Subdivision surfaces

■ Topic:
How do we extend ideas from subdivision curves to the problem of representing surfaces?
■ Recommended Reading:

- Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 10.2.
[Course reader pp. 262-268]

