
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Viewing and Projections

Don Fussell
Computer Science Department

The University of Texas at Austin

A Simplified Graphics Pipeline
Application

Vertex batching & assembly

Triangle assembly

Triangle clipping

Triangle rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

University of Texas at Austin CS354 - Computer Graphics Don Fussell

A few more steps expanded
Application

Vertex batching & assembly

Lighting

View frustum clipping

Triangle rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Vertex transformation

User defined clipping

Back face culling

Perspective divide

Triangle assembly Texture coordinate generation

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Conceptual Vertex Transformation
glVertex*
API
commands

Modelview
matrix

User-defined
clip planes

View-frustum
clip planes

to primitive
rasterization

object-space coordinates
(xo,yo,zo,wo)

eye-space coordinates
(xe,ye,ze,we)

clipped eye-space coordinates

clipped clip-space
 coordinates Perspective

division
Projection
matrix

Viewport + Depth Range
transformation

(xc,yc,zc,wc)

window-space
coordinates

(xw,yw,zw,1/wc)

normalized device coordinates (NDC)

(xn,yn,zn,1/wc)

clip-space
coordinates

(xc,yc,zc,wc)

(xe,ye,ze,we)

(xe,ye,ze,we)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Pipeline View

 modelview
transformation

 projection
transformation

perspective
 division

clipping

projection

nonsingular

4D → 3D

homogeneous
for perspective

3D → 2D

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Perspective Equations

Consider top and side views

xp =

dz
x
/

dz
x
/

yp =
dz
y
/

zp = d

University of Texas at Austin CS354 - Computer Graphics Don Fussell

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Four-component positions!

 Conventional geometry represents 3D points at
(x,y,z) positions

Affine 3D positions, Cartesian coordinates
 Projective position concept

Use fourth coordinate: W
 So (x,y,z,w)

(x/w, y/w, z/w) is the corresponding affine 3D position
Known as “homogeneous coordinates”

 Advantages
Represents perspective cleanly
Allows rasterization of external triangles
Puts off (expensive) division

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Example, All Identical Positions

 Affine 3D
(x,y,z)

 Projective 3D
(x,y,z,w) → (x/w,y/w,z/w)

(2,-5,10) (2,-5,10,1)

(4,-10,20,2)

(1,-2.5,5,0.5)

(-2,5,-10,-1)

Homogeneous Form

consider q = Mp where
M =

!
!
!
!

"

#

$
$
$
$

%

&

0/100
0100
0010
0001

d

!
!
!
!

"

#

$
$
$
$

%

&

1
z
y
x

!
!
!
!

"

#

$
$
$
$

%

&

dz
z
y
x

/

q = ⇒ p =

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Perspective Division

 However w ≠ 1, so we must divide by w to
return from homogeneous coordinates
 This perspective division yields

the desired perspective equations
 We will consider the corresponding clipping
volume with the OpenGL functions

xp =
dz
x
/

yp =
dz
y
/

zp = d

University of Texas at Austin CS354 - Computer Graphics Don Fussell

OpenGL Perspective

glFrustum(left,right,bottom,top,near,far
)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Simple Perspective
Consider a simple perspective with the COP at the

origin, the near clipping plane at z = -near, and a 90
degree field of view determined by the planes

 x = ±z, y = ±z

University of Texas at Austin CS354 - Computer Graphics Don Fussell

(1,1,-n)

(-1,-1,-n)

z = -f

Generalization

N =

1 0 0 0
0 1 0 0
0 0 α β

0 0 −1 0

"

#

$
$
$
$

%

&

'
'
'
'

after perspective division, the point (x, y, z, 1) goes to

x’ = x/z
y’ = y/z
z’ = -(α+β/z)

which projects orthogonally to the desired point
regardless of α and β

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Picking α and β

If we pick

α =

β =

−
f + n
f − n

−
2nf
f − n

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mapped to x = ± 1, y = ± 1

Hence the new clipping volume is the default clipping volume

University of Texas at Austin CS354 - Computer Graphics Don Fussell

N =

1 0 0 0
0 1 0 0

0 0 −
f + n
f − n

−
2nf
f − n

0 0 −1 0

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

General Perspective Frustum

University of Texas at Austin CS354 - Computer Graphics Don Fussell

x ' = x + l + r
2n

z

y ' = y+ t + b
2n

z

z ' = z

H =

1 0 l + r
2n

0

0 1 t + b
2n

0

0 0 1 0
0 0 0 1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
& Step 1: Shear to center on –z axis

General Perspective Frustum

University of Texas at Austin CS354 - Computer Graphics Don Fussell

x ' = 2n
r − l

x

y ' = 2n
t − b

y

z ' = z

S =

2n
r − l

0 0 0

0 2n
t − b

0 0

0 0 1 0
0 0 0 1

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

Step 2: Scale so boundary slopes are ±1

Normalization Transformation

original clipping
 volume original object new clipping

 volume

distorted object
projects correctly

University of Texas at Austin CS354 - Computer Graphics Don Fussell

OpenGL Perspective Matrix

 The normalization in glFrustum requires
an initial shear to form a right viewing
pyramid, followed by a scaling to get the
normalized perspective volume. Finally, the
perspective matrix results in needing only a
final orthogonal transformation

P = NSH

our previously defined
 perspective matrix

shear and scale

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Normalization

 Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume
 This strategy allows us to use standard
transformations in the pipeline and makes
for efficient clipping

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Oblique Projections

 The OpenGL projection functions cannot
produce general parallel projections such as

 However if we look at the example of the cube
it appears that the cube has been sheared
 Oblique Projection = Shear + Orthogonal
Projection

University of Texas at Austin CS354 - Computer Graphics Don Fussell

General Shear

side view top view

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Shear Matrix

xy shear (z values unchanged)

Projection matrix

General case:

1 0 −cotθ 0
0 1 −cotφ 0
0 0 1 0
0 0 0 1

"

#

$
$
$
$

%

&

'
'
'
'

H(θ,φ) =

P = Morth H(θ,φ)

P = Morth STH(θ,φ)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Equivalency

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Effect on Clipping

 The projection matrix P = STH transforms
the original clipping volume to the default
clipping volume

top view

DOP DOP

near plane

far plane

object

clipping
volume

z = -1

z = 1

x = -1
x = 1

 distorted object
(projects correctly)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Using Field of View

 With glFrustum it is often difficult to get the
desired view
 gluPerpective(fovy, aspect, near,
far) often provides a better interface

aspect = w/h

front plane

University of Texas at Austin CS354 - Computer Graphics Don Fussell

OpenGL Perspective

 glFrustum allows for an unsymmetric
viewing frustum (although gluPerspective
does not)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Frustum Transform
 Prototype

glFrustum(GLdouble left, GLdouble right,
 GLdouble bottom, GLdouble top,
 GLdouble near, GLdouble far)

 Post-concatenates a frustum matrix

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−

+−
−

+

−

−

+

−

0100

2)(00

020

002

nf
fn

nf
nf
bt
bt

bt
n

lr
lr

lr
n

University of Texas at Austin CS354 - Computer Graphics Don Fussell

glFrustum Matrix

 Projection specification
glLoadIdentity();
glFrustum(-4, +4, -3, +3, 5, 80)
 left=-4, right=4, bottom=-3, top=3, near=5, far=80

 Matrix

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

0100
75
800

75
8500

00
3
50

000
4
5

=

-Z axis

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−

+−
−

+

−

−

+

−

0100

2)(00

020

002

nf
fn

nf
nf
bt
bt

bt
n

lr
lr

lr
n

symmetric left/right & top/bottom so zero

80 5

University of Texas at Austin CS354 - Computer Graphics Don Fussell

glFrustum Example

 Consider
glLoadIdentity();
glFrustum(-30, 30, -20, 20, 1, 1000)

  left=-30, right=30, bottom=-20, top=20, near=1, far=1000

 Matrix

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

0100
999
2000

999
100100

00
20
10

000
30
1

=

-Z axis

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−

+−
−

+

−

−

+

−

0100

2)(00

020

002

nf
fn

nf
nf
bt
bt

bt
n

lr
lr

lr
n

symmetric left/right & top/bottom so zero

University of Texas at Austin CS354 - Computer Graphics Don Fussell

glOrtho and glFrustum

 These OpenGL commands provide a
parameterized transform mapping eye space
into the “clip cube”
 Each command

glOrtho is orthographic
glFrustum is
single-point perspective

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Handedness of Coordinate Systems

  When
Object coordinate system is right-handed,
Modelview transform is generated from one or more of the
commands glTranslate, glRotate, and glScale with positive
scaling values,
Projection transform is loaded with glLoadIdentity
followed by exactly one of glOrtho or glFrustum,
Near value specified for glDepthRange is less than the
far value;

  Then
Eye coordinate system is right-handed
Clip, NDC, and window coordinate systems
are left-handed

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Conventional OpenGL Handedness

  Right-handed
Object space
Eye space

  Left-handed
Clip space
Normalized Device
Coordinate (NDC) space
Window space

Positive depth
is further from viewer

In eye space, eye
is “looking down” the
negative Z axis

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Affine Frustum Clip Equations

 The idea of a [-1,+1]3 view frustum cube
Regions outside this cube get clipped
Regions inside the cube get rasterized

 Equations
 -1 ≤ xc ≤ +1
 -1 ≤ yc ≤ +1
 -1 ≤ zc ≤ +1

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Projective Frustum Clip Equations

 Generalizes clip cube as a projective space
Uses (xc,yc,zc,wc) clip-space coordinates

 Equations
 -wc ≤ xc ≤ +wc
 -wc ≤ yc ≤ +wc
 -wc ≤ zc ≤ +wc

 Notice
Impossible for wc < 0 to survive clipping
Interpretation: wc is distance in front of the eye

 So negative wc values are “behind your head”

University of Texas at Austin CS354 - Computer Graphics Don Fussell

NDC Space Clip Cube

(-1,-1,-1) (+1,-1,-1)

(+1,+1,-1) (-1,+1,-1)

(-1,-1,+1)

(+1,+1,+1)

(+1,-1,+1)

(-1,+1,+1)

Post-perspective divide
puts the region surviving
clipping within the
[-1,+1]3

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Clip Space Clip Cube

(xmin/w,ymin/w,zmin/w)
Pre-perspective divide puts the region surviving clipping within
-w ≤ x ≤ w, -w ≤ y ≤ w, -w ≤ z ≤ w

(xmax/w,ymin/w,zmin/w)

(xmax/w,ymin/w,zmax/w) (xmin/w,ymin/w,zmax/w)

(xmax/w,ymax/w,zmax/w)

(xmax/w,ymax/w,zmin/w) (xmin/w,ymax/w,zmin/w)

(xmin/w,ymax/w,zmax/w) Constraints
 xmin = -w
 xmax = w
 ymin = -w
 ymax = w
 zmin = -w
 zmax = w
 w>0

Window Space Clip Cube

(x,y,zNear) (x+w,y,zNear)

(x+w,y+h,zNear) (x,y+h,zNear)

(x,y,zFar)

(x+w,y+h,zFar)

(x+w,y,zFar)

(x,y+h,zFar)

Assuming glViewport(x,y,w,h) and glDepthRange(zNear,zFar)

Constraints
 w>0
 h>0
 0 ≤ zNear ≤ 1
 0 ≤ zFar ≤ 1

University of Texas at Austin CS354 - Computer Graphics Don Fussell

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Perspective Divide
 Divide clip-space (x,y,z) by clip-space w

To get Normalized Device Coordinate (NDC) space

 Means reciprocal operation is done once
And done after clipping
Minimizes division by zero concern

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

c

c

c

c

c

c

n

n

n

w
z
w

y
w

x

z
y
x

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Transform All Box Corners
  Consider

glLoadIdentity();
glOrtho(-20, 30, 10, 60, 15, -25);

  l=-20, r=30, b=10, t=50, n=15, f=-25
Eight box corners: (-20,10,-15), (-20,10,25), (-20, 50,-15), (-20, 50,-25),
 (30,10,-15), (30,10,25), (30,50,-15), (30,50,25)

  Transform each corner by the 4x4 matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

1111
25152515
50501010
30303030

1111
25152515
50501010
20202020

1000
4
1

20
100

2
30

20
10

5
100

25
1

8 corners in column vector (position) form

keep in mind: looking down
the negative Z axis… so Z box coordinates are

 negative n (-15) and
 negative f (+25)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Box Corners in Clip Space

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

1111
25152515
50501010
30303030

1111
25152515
50501010
20202020

1000
4
1

20
100

2
30

20
10

5
100

25
1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−+−

++−−

++++

+−+−

++−−

−−−−

=

1111
1111
1111
1111

1111
1111
1111
1111

 result is “corners” of clip space (and NDC) clip cube

8 “eye space” corners in column vector form

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Transform All Box Corners

  Consider
glLoadIdentity();
glFrustum(-30, 30, -20, 20, 1, 1000)

  left=-30, right=30, bottom=-20, top=20, near=1, far=1000

Eight box corners: (-30,-20,-1), (-30,-20,-1000), (-30, 20,-1), (-30, 20,-1000),
 (30,10,-1), (30,10,-1000), (30,50,-1), (30,50,-1000)

  Transform each corner by the 4x4 matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−

−−−−

−−

−−−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−− 1111
1000110001
20000202000020
30000303000030

1111
1000110001
20000202000020
30000303000030

0100
999
2000

999
100100

00
20
10

000
30
1

keep in mind: looking down
the negative Z axis… so Z box coordinates are

 negative n (-1) and
 negative f (-1000)

near near near near far far far far

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Box Corners in Clip Space

=

−1 −1000 −1 −1000
−1 −1000 +1 +1000
−1 +1000 −1 +1000
+1 +1000 +1 +1000

+1 +1000 +1 +1000
−1 −1000 +1 +1000
−1 +1000 −1 +1000
+1 +1000 +1 +1000

"

#

$
$
$
$

%

&

'
'
'
'

8 “eye space” corners in column vector form

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−

−−−−

−−

−−−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−− 1111
1000110001
20000202000020
30000303000030

1111
1000110001
20000202000020
30000303000030

0100
999
2000

999
100100

00
20
10

000
30
1

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Box Corners in NDC Space
 Perform perspective divide

W component is 1 (at near plane) or 1/1000 (at far plane)
Z component is always -1 (assuming W=1 eye-space positions)

wdivide

−1 −1000 −1 −1000
−1 −1000 +1 +1000
−1 +1000 −1 +1000
+1 +1000 +1 +1000

+1 +1000 +1 +1000
−1 −1000 +1 +1000
−1 +1000 −1 +1000
+1 +1000 +1 +1000

"

#

$
$
$
$

%

&

'
'
'
'

(

)

*
*
*
*

+

,

-
-
-
-

=

−1 −1 −1 −1
−1 −1 +1 +1
−1 +1 −1 +1
+1 +1 +1 +1

+1 +1 +1 +1
−1 −1 +1 +1
−1 +1 −1 +1
+1 +1 +1 +1

"

#

$
$
$
$

%

&

'
'
'
'

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Eye Space and NDC Space

Eye space NDC space

“behind the eye”

“beyond the far
clip plane”

“between eye and near clip plane”

“rendered (visible) region”

[Eric Lengyel]

Hidden-Surface Removal

  Although our selection of the form of the perspective
matrices may appear somewhat arbitrary, it was chosen so
that if z1 > z2 in the original clipping volume then for the
transformed points z1’ > z2’
  Thus hidden surface removal works if we first apply the
normalization transformation
  However, the formula z’ = -(α+β/z) implies that the distances
are distorted by the normalization which can cause
numerical problems especially if the near distance is small

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Why do we do it this way?

 Normalization allows for a single pipeline
for both perspective and orthogonal viewing
 We stay in four dimensional homogeneous
coordinates as long as possible to retain
three-dimensional information needed for
hidden-surface removal and shading
 We simplify clipping

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Notes

 We stay in four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

Both these transformations are nonsingular
Default to identity matrices (orthogonal view)

 Normalization lets us clip against simple cube
regardless of type of projection
 Delay final projection until end

Important for hidden-surface removal to retain depth
information as long as possible

University of Texas at Austin CS354 - Computer Graphics Don Fussell

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Viewport and Depth Range
 Prototypes

glViewport(GLint vx, GLint vy, GLsizei vw, GLsizei vh)
glDepthRange(GLclampd n, GLclampd f)

 Equations
Maps NDC space to window space

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
+

−

⎟
⎠

⎞
⎜
⎝

⎛ ++

⎟
⎠

⎞
⎜
⎝

⎛ ++

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

22

22

22

nfznf

vvyv

vvxv

z
y
x

n

h
yn

h

w
xn

w

w

w

w

Next Lecture
Modelview Transformations

University of Texas at Austin CS354 - Computer Graphics Don Fussell

