Viewing and Projections

Don Fussell
Computer Science Department

The University of Texas at Austin

o EmmmEmESSSE

University of Texas at Austin CS354 - Computer Graphics Don Fussell

1w A Simplified Graphics Pipeline

I Application I
—————————————— l————————————————-
Vertex batching & assembly
| |

v
I Triangle assembly I

3
I Triangle clipping I
y
I NDC to window space I

v

I Triangle rasterization I

v
I Fragment shading I

‘ i
I Depth testing |<—> Depth buffer

v
I Color update |—> Framebuffer 77>

University of Texas at Austin CS354 - Computer Graphics Don Fussell

W) A few more steps expanded

| Application |

| Vertex batching & assembly |

v
| Vertex transformation H Lighting |->| Texture coordinate generation |->| Triangle assembly |

A 4
| User defined clipping H View frustum clipping I—->| Perspective divide |
v |

| NDC to window space |

v
| Back face culling H Triangle rasterization |
4
| Fragment shading |
4

| Depth testing |1—> Depth buffer

| Color update |—’ Framebuffer F—>

University of Texas at Austin = CS354 - Computer Graphics Don Fussell

Conceptual Vertex Transformation

1Vertex* :
iPI object-space coordinates Modelview eye-space coordinates User-defined
(XY o0rZooWo) matrix (X, orZerW,) clip planes

commands (XooY 0rZesW,)

clipped eye-space coordinates

(XesYerZesWe)

clip-space clipped clip-space
Projection coordinates coordinates _(Perspective
matrix (XY o Zo W) clip planes (XsYerZerW,) 1d1v1310n

normalized device coordinates (NDC)

(Xp>YnsZs L/W,)

Viewport + Depth Range
transformation

University of Texas at Austin CS354 - Computer Graphics Don Fussell

window-space
coordinates . top rimitive
(wYwzolWe) - pasterization

Pipeline View

homogeneous
/‘/ for perspectiv
nonsingula

:-

3D —= 2D

4D — 3D

University of Texas at Austin CS354 - Computer Graphics Don Fussell

C

Perspective Equations

Consider top and side views

(x, z) 1
bl 2!
P : z:d . (Yp!d) i
: 2/d !
' - X Z -t !
z=d
Y
Z
_ X _ Yy
X 3) z =d
" oz/d ' oz/d g

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Four-component positions!

® Conventional geometry represents 3D points at
(X,y,Z) positions
m Affine 3D positions, Cartesian coordinates
m Projective position concept

m Use fourth coordinate: W

® So (X,Y,Z,W)
m (X/w, y/w, z/w) 1s the corresponding affine 3D position
m Known as “homogeneous coordinates”

m Advantages
m Represents perspective cleanly

m Allows rasterization of external triangles
m Puts off (expensive) division

University of Texas at Austin CS354 - Computer Graphics Don |

Example, All Identical Positions

m Affine 3D ® Projective 3D

" (X,y,2) " (X,y,Z,W) — (X/W,y/W,Z/W)

(1,-2.5,5,0.5)

(2,_5’10) (2,'5,10,1)

(4,-10,20,2)

University of Texas at Austin CS354 - Compute(Graph?cs bon Fusseﬂ)

Homogeneous Form

1 0 0 O
MmM=|0 I 0 O
consider q = Mp where 00 1 0
0 0 1/d O
e Y
q= % == i 4
z Z
1 z/d

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Perspective Division

®m However w = 1, so we must divide by w to
return from homogeneous coordinates

m This perspective division yields

xp_ A yp_ 4 Z:d

- Z/d - z/d :
the desired perspective equations

®m We will consider the corresponding clipping
volume with the OpenGL functions

University of Texas at Austin CS354 - Computer Graphics Don Fussell

OpenGL Perspective

glFrustum(left,right,bottom, top,near, far

) /]z:»rar

L

“~(left, bottom -near]

- X

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Simple Perspective

Consider a simple perspective with the COP at the
origin, the near clipping plane at z = -near, and a 90
degree field of view determined by the planes

X =%z Y= £z

-
N
I
iy

_7‘ (1,1,-n)

(-1,-1,-n) |

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Generalization

1 0 0 O

0O 1 0 O
N={0 O a p
0 0 -1 0

after perspective division, the point (x, y, z, 1) goes to

x ' =x/z
y' =y/z
z'=-(atf/z)

which projects orthogonally to the desired point
regardless of o and f3

University of Texas at Austin CS354 - Computer Graphics Don Fussell

If we pick 10 0 0
f+n 0 1 0 0
s, I
-n N= 0 0 _f+n 2nf
= _2nf f-n f-n
—n 0O O -1 0

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mappedtox==1,y==+1

Hence the new clipping volume is the default clipping volume

University of Texas at Austin CS354 - Computer Graphics Don Fussell

General Perspective Frustum

[+7
X'=x+—7
2n
b
y'=y o
=z
1 g
2n
H=| 0 1 ﬂ
2n
0O O 1
0O O 0

z = -far
‘4@2/2 -n)/
(0, -n);
,(I -n) (r, -n)
- 2 >
X

Step 1: Shear to center on —z axis

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Step 2: Scale so boundary slopes are *1

0 0O 1 0
1

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Normalization Transformation

distorted object
z=x projects correctly

-

L3

. Z = -near
original c{ppM

volume original object new clipping
volume

z= -]

University of Texas at Austin CS354 - Computer Graphics Don Fussell

OpenGL Perspective Matrix

® The normalization in glFrustum requires
an 1nitial shear to form a right viewing
pyramid, followed by a scaling to get the
normalized perspective volume. Finally, the
perspective matrix results in needing only a
final orthogonal transformation

ge =
our previously defined shear and scale

perspective matrix
University of Texas at Austin CS354 - Computer Graphics Don Fussell

e\

Normalization

m Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume

m This strategy allows us to use standard
transformations 1n the pipeline and makes
for efficient clipping

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Oblique Projections

mThe OpenGL projection functions cannot
produce general parallel projections such as

mHowever if we look at the examp!
it appears that the cube has been s|

e of the cube
heared

mOblique Projection = Shear + Ort]
Projection

University of Texas at Austin CS354 - Computer Graphics

nogonal

Don Fussell

General Shear

Back clipping plane
Object

\

Projection plane
\ DOP

- X

Front clipping plane

(z, ¥

top view side view

Y
V4 A -

University of Texas at Austin CS354 - Computer Graphics Don Fussell

1 0O —cotd O
HO,)=| O 1 -cotg O
0 O 1 0
0 O 0 1
Projection matrix P=M_, H(6,0)
General case: P=M_, STH(0,0)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Effect on Clipping

® The projection matrix P = STH transforms
the original clipping volume to the default

clipping volume

object
|

top view

volume

D7/ |
/ \ far plane

clipping jear plane

—_—

x=-1

z=-1

DOP

e
|
[E—

distorted object

(projects correctly)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Using Field of View

® With glFrustum it is often difficult to get the
desired view

m gluPerpective (fovy, aspect, near,
far) often provides a better interface

X , «— front plane

aspect = w/h

fov

z
University of Texas at Austin CS354 - Computer Graphics Don Fussell

OpenGL Perspective

" glFrustum allows for an unsymmetric
viewing frustum (although gluPerspective
does not)

/ min

max’ ymax' qux)

(Xmin' ymin’zmax) 4|

COP

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Frustum Transform

le left, GLdouble right,
le bottom, GLdouble top,

le near, GLdouble far)

m Post-concatenates a frustum matrix

m Prototype
m glFrustum(GLdoub
GLdoub]
GLdoub!
208 el
r—1 r—1
0 st R St
t-b t-b
0 0o - (f+n) =-2fn
f-n f-n
0 -1 0

University of Texas at Austin CS354 - Computer Graphics Don Fussell

glFrustum Matrix

® Projection specification L
4 : D - > 5 _
m gl oadldentity(); - 80
glFrustum(-4, +4, -3, +3, 5, 80) -Z axis
mleft=-4, right=4, bottom=-3, top=3, near=5, far=80
m Matrix symmetric left/right & top/bottom so zero
ﬂ 0 I/'_-I-l 0 § 0 0
r—1 r— Zi 4
2n t+ 5
o — — 0 . 0 = 0
t—b t—b — 3
D /] owp) - My 0
f-n f-n) 7S
0 0 —1 0 _ 0 0 -1 0

University of Texas at Austin CS354 - Computer Graphics Don Fussell

glFrustum Example

m Consider . ‘e
m glLoadldentity(); = - o
glFrustum(-30, 30, -20, 20, 1, 1000) -7 axis
m [eft=-30, right=30, bottom=-20, top=20, near=1, far=1000

m Matrix symmetric left/right & top/bottom so zero

2n 0 r+1 0 i 0 0

r—1 r—1 30
0 2n t+b 0 1o L 0
t—b t—b ol 20
0 0 —(f+n) -=-2fn 0 0 ~ 1001 2000
—n —n 999 999
0 0 -1 0 0 O -1 0

University of Texas at Austin CS354 - Computer Graphics Don Fussell

glOrtho and glFrustum

® These OpenGL commands provide a
parametenzed transform mapping eye space
into the “clip cube”

m Each command | L
m ¢g]Ortho 1s orthographic oo
m glFrustum 1s
single-point perspective -
-

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Handedness of Coordinate Systems

® When

m Object coordinate system is right-handed,

m Modelview transform 1s generated from one or more of the
commands glTranslate, glRotate, and glScale with positive
scaling values,

®m Projection transform is loaded with glLoadIdentity
followed by exactly one of glOrtho or glFrustum,

m Near value specified for glDepthRange is less than the
far value;

m Then

m Eye coordinate system is right-handed

m Clip, NDC, and window coordinate systems
are left-handed

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Conventional OpenGL Handedness

m Right-handed m [eft-handed
m Object space m Clip space
m Eye space m Normalized Device
Coordinate (NDC) space

® Window space

Right-handed Left-handed
Cartesian Coordinates Cartesian Coordinates
Y Y
A -
In eye space, eye Positive depth
is “looking down" the z s further from viev
X

, ﬁ] negative Z axis »X

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Affine Frustum Clip Equations

m The idea of a [-1,+1]° view frustum cube

m Regions outside this cube get clipped
m Regions 1nside the cube get rasterized

m Equations
m -] <x <+l
m -]<y =<+l
m -] <z <+I

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Projective Frustum Clip Equations

m Generalizes clip cube as a projective space
m Uses (X,,y.,Z.,W,.) clip-space coordinates
m Equations
B W, SX, S TW,
" W Sy S tw,
" W, Sz, <Hw,
m Notice
® [mpossible for w_ < 0 to survive clipping

m Interpretation: w, is distance in front of the eye
® So negative w, values are “behind your head”

University of Texas at Austin CS354 - Computer Graphics Don Fussell

NDC Space Clip Cube

(-1,+1.+1) (+1,41,+1)
Post-perspective divide
puts the region surviving -1,+1,-1) (+1,41,-1)
clipping within the -
[-1,+1F
(-1,-1,+1 (e B 65]
(-1,-1,-1) (+1,-1,-1)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Clip Space Clip Cube

Constraints (X' WsY max/ WsZinad/ W) (Xmax! WoY max! WoZmax/ W)

Xmin — ~W
X —

max
Ymin — W (Xmm/ W, Ymax/ me/ W) Xmax/ W?Ymax/ W, Zmln/ W)
Ymax = W
7 .=

min
Z — W

max

X . /W.Y._. [W,Z W
wo0 Kmin WY pin W Zimar/ W) (Xmax! WsYomin/ WsZimax/ W)
(max/ WﬂYmm/ W me/ W)

(Xmin/ WﬂYmin/ W me/ W)

Pre-perspective divide puts the region surviving clipping within

-WSXSW, -WSYySW, -WSZ<W
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Window Space Clip Cube

(X,y+h,zFar) (x+w,y+h,zFar)
X,y+h,zNepr) (x+w,y+h,zNear)
Constraints

(x,y,zFar (x+w,y,zHar) w0
h>0
0 <zNear <1
0<zFar<l|]

(X,y,zNear) (x+w,y,zNear)

Assuming glViewport(x,y,w,h) and glDepthRange(zNear,zFar)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Perspective Divide

m Divide clip-space (X,y,z) by clip-space w
m To get Normalized Device Coordinate (NDC) space

® Means reciprocal operation 1s done once
® And done after clipping

® Minimizes division by zero concern -)7 -
C
_xn _ "
vl ="
n WC

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Transform All Box Corners

keep in mind: looking down

= Consider | the negative Z axis... so Z box coordinates are
m glLoadldentity(); negative n (-15) and
el0rtho(-20, 30, 10, 60, 15, -25); negative f (+23)

m |=-20, =30, b=10, t=50, n=15, {=-25

m Eight box corners: (-20,10.-15), (-20,10,25), (-20, 50,-15), (-20, 50,-25),
(30,10,-15), (30,10,25), (30,50,-15), (30,50,25)

® Transform each corner by the 4x4 matrix

L

25 5/ [-20 -20 -20 -20 30 30 30 307
1oy 3110 10 5 5 10 10 50 50
<D SRR 5. 25 15 W5 misT 250 525

e g iR SR [S TR

P Ui gy 8 corners in column vector (position) form

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Box Corners 1n Clip Space

0 O

=
20

0 OL

20

0O O

1

-20 -20 -20 -20 30 30 30 30]
10 10 50 50 10 10 50 50
-15 25 -15 25 -15 25 -15 25
1 1 1 1 1 1 1 1

-1 -1 -1 +1 +1 +1 +1]

-1 +1 +1 -1 -1 +1 +1

+1 -1 +1 -1 +1 -1 +1

1 1 1 1 1 1 1

11 Y4 .
8 “eye space corners in column vector form

result is “corners’ of clip space (and NDC) clip cube

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Transform All Box Corners

keep in mind: looking down
m Consider the negative Z axis... so Z box coordinates are

m glloadldentity(); neg atz:ve n(-1) and
olFrustum(-30, 30, -20, 20, 1, 1000) negative f (-1000)
m [eft=-30, right=30, bottom=-20, top=20, near=1, far=1000

m Eight box corners: (-30,-20,-1), (-30,-20,-1000), (-30, 20,-1), (-30, 20,-1000),
(30,10,-1), (30,10,-1000), (30,50,-1), (30,50,-1000)

m Transform each corner by the 4x4 matrix

T O 1 1230 -30000 -30 -30000 30 30000 30 30000
0 L 0 _20 -20000 20 20000 -20 -20000 20 20000
20 001 2000| | =1 =1000 -1 -1000 -1 -1000 -1 -1000

B 0 1 1 1 1 1 1 —

S ¢ near far near far near far near far

University of Texas at Austin CS354 - Computer Graphics Don Fussell

0

1001 2000

0

999
-1

University of Texas at Austin CS354 - Computer Graphics

999
0

—-1000
—-1000
+1000
+1000

Box Corners 1n Clip Space

11 Y4 .
8 “eye space corners in column vector form

[—30
-20
-1

1

—-30000
—20000
—-1000
1

—1000
+1000
+1000
+1000

-30 -30000

20
-1
1

20000
—-1000
1

+1000
—1000
+1000
+1000

30 30000 30 300007

-20 -20000 20 20000
-1 -1000 -1 -1000
1 1 1 1

+1000
+1000
+1000
+1000 |

+1
+1

+1

Don Fussell

Box Corners in NDC Space

m Perform perspective divide

([1 -1000 -1 -1000 +1 +1000 +I +1000
wdivide -1 -1000 +1 +1000 -1 -1000 +1 +1000
-1 +1000 -1 +1000 -1 +1000 -1 +1000
L +1 +1000 +1 +1000 +1 +1000 +1 +1000 1)
-1 -1 -1 -1 +1 +1 +1 +1
| -1 -1 +1 +1 -1 -1 +1 +1
-1+ -1 #1001 +1 -1 +1
+1 +1 +1 +1 +1 +1 +1 +1 |

W component is 1 (at near plane) or 1/1000 (at far plane)
Z component is always -1 (assuming W=1 eye-space positions)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Eye Space and NDC Space

clip plane”

“beyond the far‘
-f

“rendered (visible) region”

_ 2fn f+n
f+n f-n
-n 1
“between eye and near clip plane” I
0 0

“behind the eye”

|

[Eric Lengyel] Eye space NDC space P

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Hidden-Surface Removal

m Although our selection of the form of the perspective
matrices may appear somewhat arbitrary, 1t was chosen so

that 1f z, > z, 1n the original clipping volume then for the
transformed points z,” >z,

® Thus hidden surface removal works 1f we first apply the
normalization transformation

m However, the formula z” = -(a+f/z) implies that the distances
are distorted by the normalization which can cause

numerical problems especially 1f the near distance 1s small

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Why do we do 1t this way?

® Normalization allows for a single pipeline

for both perspective and ortl

® We stay 1n four dimensiona

nogonal viewing

- homogeneous

coordinates as long as possi!
three-dimensional informati
hidden-surface removal and

m We simplify clipping

ble to retain
on needed for
shading

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Notes

mWe stay in four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

mBoth these transformations are nonsingular
mDefault to identity matrices (orthogonal view)

mNormalization lets us clip against simple cube
regardless of type of projection

mDelay final projection until end

mImportant for hidden-surface removal to retain depth
information as long as possible

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Viewport and Depth Range

® Prototypes

m glViewport(GLint vx, GLint vy, GLsize1 vw, GLsize1 vh)
m glDepthRange(GLclampd n, GLclampd f)

m Equations

m Maps NDC space to window space

(X

w

Y

\ “w)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

(

\

V

Y

+
2J/n

f-n
2

Z

n

Next Lecture

m Modelview Transformations

University of Texas at Austin CS354 - Computer Graphics Don Fussell

