Viewing and Projections

Don Fussell
Computer Science Department
The University of Texas at Austin

A Simplified Graphics Pipeline

A few more steps expanded

Conceptual Vertex Transformation

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Pipeline View

$$
4 D \rightarrow 3 D \quad 3 D \rightarrow 2 D
$$

Perspective Equations

Consider top and side views

Four-component positions!

- Conventional geometry represents 3D points at (x,y,z) positions
- Affine 3D positions, Cartesian coordinates
- Projective position concept
- Use fourth coordinate: W
- So (x,y,z,w)
- $(\mathrm{x} / \mathrm{w}, \mathrm{y} / \mathrm{w}, \mathrm{z} / \mathrm{w})$ is the corresponding affine 3 D position
- Known as "homogeneous coordinates"
- Advantages
- Represents perspective cleanly
- Allows rasterization of external triangles
- Puts off (expensive) division

Example, All Identical Positions

\square Affine 3D

- ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- Projective 3D
$\square(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}) \rightarrow(\mathrm{x} / \mathrm{w}, \mathrm{y} / \mathrm{w}, \mathrm{z} / \mathrm{w})$

(4,-10,20,2)

Homogeneous Form

$$
\begin{aligned}
& \text { consider } \mathbf{q}=\mathbf{M p} \text { where } \mathbf{M}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right] \\
& \mathbf{q}=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \Rightarrow \mathbf{p}=\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]
\end{aligned}
$$

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Perspective Division

■ However $w \neq 1$, so we must divide by w to return from homogeneous coordinates

- This perspective division yields

$$
x_{\mathrm{p}}=\frac{x}{z / d} \quad y_{\mathrm{p}}=\frac{y}{z / d} \quad z_{\mathrm{p}}=d
$$

the desired perspective equations
$■$ We will consider the corresponding clipping volume with the OpenGL functions

OpenGL Perspective

glFrustum(left, right,bottom, top, near, far)

Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at $z=-$ near, and a 90 degree field of view determined by the planes

$$
x= \pm z, y= \pm z
$$

Generalization

$$
\mathbf{N}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{array}\right]
$$

after perspective division, the point $(x, y, z, 1)$ goes to

$$
\begin{aligned}
& x^{\prime}=x / z \\
& y^{\prime}=y / z \\
& z^{\prime}=-(\alpha+\beta / z)
\end{aligned}
$$

which projects orthogonally to the desired point regardless of α and β

Picking α and β

If we pick

$$
\begin{aligned}
\alpha & =-\frac{f+n}{f-n} \\
\beta & =-\frac{2 n f}{f-n}
\end{aligned}
$$

$$
\mathbf{N}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 n f}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

the near plane is mapped to $z=-1$
the far plane is mapped to $z=1$ and the sides are mapped to $x= \pm 1, y= \pm 1$

Hence the new clipping volume is the default clipping volume

General Perspective Frustum

$x^{\prime}=x+\frac{l+r}{2 n} z$
$y^{\prime}=y+\frac{t+b}{2 n} z$

$$
z^{\prime}=z
$$

$$
H=\left[\begin{array}{cccc}
1 & 0 & \frac{l+r}{2 n} & 0 \\
0 & 1 & \frac{t+b}{2 n} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Step 1: Shear to center on -z axis

University of Texas at Austin CS354 - Computer Graphics Don Fussell

General Perspective Frustum

$$
\begin{gathered}
x^{\prime}=\frac{2 n}{r-l} x \\
y^{\prime}=\frac{2 n}{t-b} y \\
z^{\prime}=z \\
S=\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & 0 & 0 \\
0 & \frac{2 n}{t-b} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { Step 2: Scale so boundary slopes are } \pm 1
\end{gathered}
$$

Normalization Transformation

OpenGL Perspective Matrix

■ The normalization in glFrustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthogonal transformation
our previously defined shear and scale perspective matrix

Normalization

\square Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
■ This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping

Oblique Projections

-The OpenGL projection functions cannot produce general parallel projections such as
-However if we look at the example of the cube it appears that the cube has been sheared
■Oblique Projection = Shear + Orthogonal Projection

General Shear

Shear Matrix

$x y$ shear (z values unchanged)

$$
\mathbf{H}(\theta, \phi)=\left[\begin{array}{cccc}
1 & 0 & -\cot \theta & 0 \\
0 & 1 & -\cot \phi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Projection matrix

$$
\mathbf{P}=\mathbf{M}_{\text {orth }} \mathbf{H}(\theta, \phi)
$$

General case:

$$
\mathbf{P}=\mathbf{M}_{\text {orth }} \mathbf{S T H}(\theta, \phi)
$$

Equivalency

Effect on Clipping

■ The projection matrix $\mathbf{P}=\mathbf{S T H}$ transforms the original clipping volume to the default clipping volume

(projects correctly)
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Using Field of View

- With glFrustum it is often difficult to get the desired view
- gluPerpective (fovy, aspect, near, far) often provides a better interface

OpenGL Perspective

- glFrustum allows for an unsymmetric viewing frustum (although gluPerspective does not)

Frustum Transform

■ Prototype

- glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far)
$■$ Post-concatenates a frustum matrix

$$
\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

glFrustum Matrix

$■$ Projection specification

- glLoadIdentity(); gIFrustum($-4,+4,-3,+3,5,80$)

-left $=-4$, right $=4$, bottom $=-3$, top $=3$, near $=5$, far= 80
- Matrix
symmetric left/right \& top/bottom so zero
$\left[\begin{array}{cccc}\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\ 0 & 0 & -1 & 0\end{array}\right]=\left[\begin{array}{ccccc}\frac{5}{4} & 0 & 0 & 0 \\ 0 & \frac{5}{3} & 0 & 0 \\ 0 & 0 & -\frac{85}{75} & -\frac{800}{75} \\ 0 & 0 & -1 & 0\end{array}\right]$

University of Texas at Austin CS354 - Computer Graphics Don Fussell

glFrustum Example

- Consider
- glLoadIdentity(); g1Frustum(-30, 30, -20, 20, 1, 1000)

$■$ left $=-30$, right $=30$, bottom $=-20$, top $=20$, near $=1$, far=1000
- Matrix
symmetric left/right \& top/bottom so zero

$$
\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{30} & 0 & 0 & 0 \\
0 & \frac{1}{20} & 0 & 0 \\
0 & 0 & -\frac{1001}{999} & -\frac{2000}{999} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

University of Texas at Austin CS354 - Computer Graphics Don Fussell

glOrtho and glFrustum

- These OpenGL commands provide a parameterized transform mapping eye space into the "clip cube"
■ Each command
- glOrtho is orthographic

- glFrustum is single-point perspective

Handedness of Coordinate Systems

- When
- Object coordinate system is right-handed,
- Modelview transform is generated from one or more of the commands glTranslate, glRotate, and glScale with positive scaling values,
- Projection transform is loaded with glLoadIdentity followed by exactly one of glOrtho or glFrustum,
- Near value specified for glDepthRange is less than the far value;
- Then
- Eye coordinate system is right-handed
- Clip, NDC, and window coordinate systems are left-handed

Conventional OpenGL Handedness

- Right-handed
- Object space
- Eye space

■ Left-handed

- Clip space
- Normalized Device Coordinate (NDC) space
- Window space

Right-handed
Cartesian Coordinates

Left-handed
Cartesian Coordinates

Positive depth
is further from viev

Affine Frustum Clip Equations

\square The idea of a $[-1,+1]^{3}$ view frustum cube
-Regions outside this cube get clipped

- Regions inside the cube get rasterized

■ Equations

- $-1 \leq \mathrm{x}_{\mathrm{c}} \leq+1$
- $-1 \leq \mathrm{y}_{\mathrm{c}} \leq+1$
- $-1 \leq \mathrm{z}_{\mathrm{c}} \leq+1$

Projective Frustum Clip Equations

- Generalizes clip cube as a projective space

■ Uses ($\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{z}_{\mathrm{c}}, \mathrm{w}_{\mathrm{c}}$) clip-space coordinates

- Equations
- $\quad-\mathrm{W}_{\mathrm{c}} \leq \mathrm{x}_{\mathrm{c}} \leq+\mathrm{W}_{\mathrm{c}}$
- $-\mathrm{w}_{\mathrm{c}} \leq \mathrm{y}_{\mathrm{c}} \leq+\mathrm{w}_{\mathrm{c}}$
- $\quad-\mathrm{W}_{\mathrm{c}} \leq \mathrm{Z}_{\mathrm{c}} \leq+\mathrm{w}_{\mathrm{c}}$
\square Notice
- Impossible for $\mathrm{w}_{\mathrm{c}}<0$ to survive clipping
- Interpretation: w_{c} is distance in front of the eye
- So negative w_{c} values are "behind your head"

NDC Space Clip Cube

Post-perspective divide puts the region surviving clipping within the $[-1,+1]^{3}$

Clip Space Clip Cube

Constraints $\quad\left(\mathrm{x}_{\min } / \mathrm{w}, \mathrm{y}_{\max } / \mathrm{w}, \mathrm{z}_{\max } / \mathrm{w}\right)\left(\mathrm{x}_{\max } / \mathrm{w}, \mathrm{y}_{\max } / \mathrm{w}, \mathrm{z}_{\max } / \mathrm{w}\right)$

$$
\mathrm{x}_{\min }=-\mathrm{w}
$$

$$
\mathrm{x}_{\max }=\mathrm{w}
$$

$$
y_{\min }=-w
$$

$$
\mathrm{y}_{\max }=\mathrm{w}
$$

$$
\mathrm{z}_{\mathrm{min}}=-\mathrm{w}
$$

$$
\begin{aligned}
& \mathrm{z}_{\max }=\mathrm{w} \\
& \mathrm{w}>0
\end{aligned}
$$

$$
\left(\mathrm{x}_{\text {min }} / \mathrm{w}, \mathrm{y}\right.
$$

Pre-perspective divide puts the region surviving clipping within
$-\mathrm{w} \leq \mathrm{x} \leq \mathrm{w}, \quad-\mathrm{W} \leq \mathrm{y} \leq \mathrm{w},-\mathrm{W} \leq \mathrm{z} \leq \mathrm{W}$

Window Space Clip Cube

Assuming glViewport(x,y,w,h) and glDepthRange(zNear,zFar)

Perspective Divide

- Divide clip-space ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) by clip-space w
- To get Normalized Device Coordinate (NDC) space
- Means reciprocal operation is done once
- And done after clipping

■ Minimizes division by zero concern

$$
\left[\begin{array}{l}
x_{n} \\
y_{n} \\
z_{n}
\end{array}\right]=\left[\begin{array}{l}
x_{c} / w_{c} \\
y_{c} / w_{c} \\
z_{c} / w_{c}
\end{array}\right]
$$

Transform All Box Corners

- Consider
- glLoadIdentity(); glOrtho(-20, 30, 10, 60, 15, -25);

■ $\mathrm{l}=-20, \mathrm{r}=30, \mathrm{~b}=10, \mathrm{t}=50, \mathrm{n}=15, \mathrm{f}=-25$
keep in mind: looking down
the negative Z axis... so Z box coordinates are negative $n(-15)$ and negative $f(+25)$

- Eight box corners: $(-20,10,-15),(-20,10,25),(-20,50,-15),(-20,50,-25)$,

$$
(30,10,-15),(30,10,25),(30,50,-15), \quad(30,50,25)
$$

- Transform each corner by the 4×4 matrix
$\left[\begin{array}{cccc}\frac{1}{25} & 0 & 0 & -\frac{1}{5} \\ 0 & \frac{1}{20} & 0 & -\frac{3}{2} \\ 0 & 0 & \frac{1}{20} & -\frac{1}{4} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccccccc}-20 & -20 & -20 & -20 & 30 & 30 & 30 & 30 \\ 10 & 10 & 50 & 50 & 10 & 10 & 50 & 50 \\ -15 & 25 & -15 & 25 & -15 & 25 & -15 & 25 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

Box Corners in Clip Space

$$
\begin{aligned}
& {\left[\begin{array}{cccr}
\frac{1}{25} & 0 & 0 & -\frac{1}{5} \\
0 & \frac{1}{20} & 0 & -\frac{3}{2} \\
0 & 0 & \frac{1}{20} & -\frac{1}{4} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccccccc}
8 \text { "eye space" corners in column vector form } \\
-20 & -20 & -20 & -20 & 30 & 30 & 30 & 30 \\
10 & 10 & 50 & 50 & 10 & 10 & 50 & 50 \\
-15 & 25 & -15 & 25 & -15 & 25 & -15 & 25 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] } \\
&=\left[\begin{array}{cccccccc}
-1 & -1 & -1 & -1 & +1 & +1 & +1 & +1 \\
-1 & -1 & +1 & +1 & -1 & -1 & +1 & +1 \\
-1 & +1 & -1 & +1 & -1 & +1 & -1 & +1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

result is "corners" of clip space (and NDC) clip cube

Transform All Box Corners

keep in mind: looking down

■ Consider

- glLoadIdentity(); glFrustum(-30, 30, -20, 20, 1, 1000) the negative Z axis... so Z box coordinates are negative $n(-1)$ and negative f (-1000)
- left=-30, right=30, bottom=-20, top=20, near=1, far=1000

■ Eight box corners: $(-30,-20,-1),(-30,-20,-1000),(-30,20,-1),(-30,20,-1000)$,

$$
(30,10,-1),(30,10,-1000),(30,50,-1), \quad(30,50,-1000)
$$

- Transform each corner by the 4×4 matrix
$\left[\begin{array}{cccc}\frac{1}{30} & 0 & 0 & 0 \\ 0 & \frac{1}{20} & 0 & 0 \\ 0 & 0 & -\frac{1001}{999} & -\frac{2000}{999} \\ 0 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{cccccccc}-30 & -30000 & -30 & -30000 & 30 & 30000 & 30 & 30000 \\ -20 & -20000 & 20 & 20000 & -20 & -20000 & 20 & 20000 \\ -1 & -1000 & -1 & -1000 & -1 & -1000 & -1 & -1000 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

Box Corners in Clip Space

$$
\begin{gathered}
{\left[\begin{array}{cccc}
\frac{1}{30} & 0 & 0 & 0 \\
0 & \frac{1}{20} & 0 & 0 \\
0 & 0 & -\frac{1001}{999} & -\frac{2000}{999} \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{cccccccc}
-30 & -30000 & -30 & -30000 & 30 & 30000 & 30 & 30000 \\
-20 & -20000 & 20 & 20000 & -20 & -20000 & 20 & 20000 \\
-1 & -1000 & -1 & -1000 & -1 & -1000 & -1 & -1000 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]} \\
\quad=\left[\begin{array}{cccccccc}
-1 & -1000 & -1 & -1000 & +1 & +1000 & +1 & +1000 \\
-1 & -1000 & +1 & +1000 & -1 & -1000 & +1 & +1000 \\
-1 & +1000 & -1 & +1000 & -1 & +1000 & -1 & +1000 \\
+1 & +1000 & +1 & +1000 & +1 & +1000 & +1 & +1000
\end{array}\right]
\end{gathered}
$$

Box Corners in NDC Space

$■$ Perform perspective divide

$$
\begin{gathered}
\text { wdivide }\left(\left[\begin{array}{lllllllll}
-1 & -1000 & -1 & -1000 & +1 & +1000 & +1 & +1000 \\
-1 & -1000 & +1 & +1000 & -1 & -1000 & +1 & +1000 \\
-1 & +1000 & -1 & +1000 & -1 & +1000 & -1 & +1000 \\
+1 & +1000 & +1 & +1000 & +1 & +1000 & +1 & +1000
\end{array}\right]\right) \\
\quad=\left[\begin{array}{lllllllll}
-1 & -1 & -1 & -1 & +1 & +1 & +1 & +1 \\
-1 & -1 & +1 & +1 & -1 & -1 & +1 & +1 \\
-1 & +1 & -1 & +1 & -1 & +1 & -1 & +1 \\
+1 & +1 & +1 & +1 & +1 & +1 & +1 & +1
\end{array}\right]
\end{gathered}
$$

W component is 1 (at near plane) or 1/1000 (at far plane)
Z component is always -1 (assuming $W=1$ eye-space positions)

Eye Space and NDC Space

Hidden-Surface Removal

- Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if $z_{1}>z_{2}$ in the original clipping volume then for the transformed points $z_{1}{ }^{\prime}>z_{2}{ }^{\prime}$
- Thus hidden surface removal works if we first apply the normalization transformation
- However, the formula $z^{\prime}=-(\alpha+\beta / z)$ implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small

Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing
$■$ We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
$■$ We simplify clipping

Notes

■We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
moth these transformations are nonsingular
-Default to identity matrices (orthogonal view)
-Normalization lets us clip against simple cube regardless of type of projection
-Delay final projection until end
-Important for hidden-surface removal to retain depth information as long as possible

Viewport and Depth Range

- Prototypes
- glViewport(GLint vx, GLint vy, GLsizei vw, GLsizei vh)

■ glDepthRange(GLclampd n, GLclampd f)

- Equations
- Maps NDC space to window space

$$
\left(\begin{array}{l}
x_{w} \\
y_{w} \\
z_{w}
\end{array}\right)=\left(\begin{array}{l}
\frac{v_{w}}{2} x_{n}+\left(v_{x}+\frac{v_{w}}{2}\right) \\
\frac{v_{h}}{2} y_{n}+\left(v_{y}+\frac{v_{h}}{2}\right) \\
\frac{f-n}{2} z_{n}+\frac{f+n}{2}
\end{array}\right)
$$

Next Lecture

- Modelview Transformations

