Viewing and Modeling

Don Fussell
Computer Science Department

The University of Texas at Austin

o EmmmEmESSSE

University of Texas at Austin CS354 - Computer Graphics Don Fussell

1w A Simplified Graphics Pipeline

I Application I
—————————————— l————————————————-
Vertex batching & assembly
| |

v
I Triangle assembly I

3
I Triangle clipping I
y
I NDC to window space I

v

I Triangle rasterization I

v
I Fragment shading I

‘ i
I Depth testing |<—> Depth buffer

v
I Color update |—> Framebuffer 77>

University of Texas at Austin CS354 - Computer Graphics Don Fussell

W) A few more steps expanded

| Application |

| Vertex batching & assembly |

v
| Vertex transformation H Lighting |->| Texture coordinate generation |->| Triangle assembly |

A 4
| User defined clipping H View frustum clipping I—->| Perspective divide |
v |

| NDC to window space |

v
| Back face culling H Triangle rasterization |
4
| Fragment shading |
4

| Depth testing |1—> Depth buffer

| Color update |—’ Framebuffer F—>

University of Texas at Austin = CS354 - Computer Graphics Don Fussell

Conceptual Vertex Transformation

1Vertex* :
iPI object-space coordinates Modelview eye-space coordinates User-defined
(XY o0rZooWo) matrix (X, orZerW,) clip planes

commands (XooY 0rZesW,)

clipped eye-space coordinates

(XesYerZesWe)

clip-space clipped clip-space
Projection coordinates coordinates _(Perspective
matrix (XY o Zo W) clip planes (XsYerZerW,) 1d1v1310n

normalized device coordinates (NDC)

(Xp>YnsZs L/W,)

Viewport + Depth Range
transformation

University of Texas at Austin CS354 - Computer Graphics Don Fussell

window-space
coordinates . top rimitive
(wYwzolWe) - pasterization

Pipeline View

homogeneous
/‘/ for perspectiv
nonsingula

:-

3D —= 2D

4D — 3D

University of Texas at Austin CS354 - Computer Graphics Don Fussell

C

Computer Viewing

m There are three aspects of the viewing process, all
of which are implemented 1n the pipeline,

m Positioning the camera

mSetting the model-view matrix
m Selecting a lens

mSetting the projection matrix
m Clipping

mSetting the view volume

University of Texas at Austin CS354 - Computer Graphics Don Fussell

The World and Camera Frames

® When we work with representations, we work with n-
tuples or arrays of scalars

® Changes in frame are then defined by 4 x 4 matrices

® In OpenGL, the base frame that we start with 1s the world
frame

m Eventually we represent entities in the camera frame by
changing the world representation using the model-view
matrix

m [nitially these frames are the same (M=I)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Vertex Transtormation

m Object-space vertex position transformed by
a general linear projective transformation

m Expressed as a 4x4 matrix

Xe my, m, Mg My X,

Ye | _ [T Ms My Tz 1)

Z, m, mg My, Myl |24,
g s e T el s |

University of Texas at Austin CS354 - Computer Graphics Don Fussell

The OpenGL Camera

® In OpenGL, 1nitially the object and camera
frames are the same

® Default model-view matrix 1s an identity

® The camera 1s located at origin and points in
the negative z direction

®m OpenGL also specifies a default view
volume that 1s a cube with sides of length 2
centered at the origin
m Default projection matrix 1s an identity

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Moving the Camera

If objects are on both sides of z=0, we must move
camera frame

1 00 O 5

010 0 o
M= 1001 -d

000 1

o /e

ﬁ y’ yc
- O -

(a) {b)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Moving the Camera Frame

m [f we want to visualize object with both positive and negative
z values we can either

® Move the camera 1n the positive z direction
mTranslate the camera frame
® Move the objects in the negative z direction

m Translate the world frame
m Both of these views are equivalent and are

determined by the model-view matrix

m Want a translation (glTranslatef (0.0,0.0,-d) ;)
md >0

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Translate Transform

m Prototype
m gl Translatef(GLfloat x, GLfloat y, GLfloat z)

m Post-concatenates this matrix

1 0 0 x’
0 1 0 vy
0 0 1 z
0 0 0 1

University of Texas at Austin CS354 - Computer Graphics Don Fussell

glTranslatef Matrix

® Modelview specification

m glLoadldentity();
glTranslatef(0,0,-14)
m x translate=0, y translate=0, z translate=-14
® Point at (0,0,0) would move to (0,0,-14)

m Down the negative Z axis

® Matrix the translation vector
1 0 0 x] 1 0 0
01 0 y 0 1 0
001 z| — |00 1 \-14
0O 0 0 O 0 0 0 1

University of Texas at Austin CS354 - Computer Graphics Don Fussell

General Camera Motion

® We can move the camera to any desired
position by a sequence of rotations and
translations ¥

: . A

m Example: side view

m Rotate the camera

®mMove 1t away from origin - x

®m Model-view matrix C = TR M
— R

Z

University of Texas at Austin CS354 - Computer Graphics Don Fussell

OpenGL code

m Remember that last transformation specified
1s first to be applied

glMatrixMode (GL MODELVIEW)
glLoadIdentity() ;
glTranslatef (0.0

, 0.0, -d);
glRotatef (90.0, 0.0

, 1.0, 0.0);

University of Texas at Austin CS354 - Computer Graphics Don Fussell

A Better Viewing Matrix

m “Look at” Transform

m Concept
® Given the following
® a 3D world-space “eye” position

Primary OpenGL libraries
Link with —Iglut for GLUT
Link with -IGLU for GLU
Link with —IGL for OpenGL

m a 3D world-space center of view position (looking “at”), and

= an 3D world-space “up” vector

® Then an affine (non-projective) 4x4 matrix can be constructed
m For a view transform mapping world-space to eye-space

® A ready implementation

® The OpenGL Utility library (GLU) provides it

m gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,
GLdouble atx, GLdouble atz, GLdouble atz,
GLdouble upx, GLdouble upy, GLdouble upz);

University of Texas at Austin CS354 - Computer Graphics Don Fussell

gluLookAt

gluLookAt (eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)

4
(ot , at , ot) i
\y Z
(up,s UP,. UP,) o e
o -X

7T leye, , eye,, eye)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

“Look At in Practice

m Consider our prior view situation
m Instead of an arbitrary view...

m ...we just translated by 14 in negative Z direction
m g|Translatef(0,0,14)

m What this means in “Look At~ parameters
m (eyex,eyey,eyez) = (0,0,14)
m (atx,aty,atz) = (0,0,0)
® (upx,upy,upz) = (0,1,0)

Not surprising both are “just translates in Z”
since the “Look At” parameters
already have use looking down the negative Z axis

University of Texas at Austin CS354 - Computer Graphics

glTranslatef(0,0,-14)

1 0 0 O]
01 0 O
0 01 -14
0 0 0 1

Same matrix;
same transform

glulookAt(0,0,14,
0,0,0,
0,1,0)

0 O]

Sy O
o o = O

0
1 -14
0

Don Fussell

The “Look At” Algorithm

® Vector math
m/=cye—at
m 7 =normalize(Z) /* normalize means Z / length(Z) */
Y =up
m X=Y XxZ /*xmeans vector cross product! */
mY=7xX /*orthgonalize */
m X = normalize(X)
® Y =normalize(Y)

® Then build the following affine 4x4 matrix

Warning: Algorithm is prone

X, X y X, -Xceye] to failure if normalize divides
Y Yy Y. -Yeepe by zero (or very nearly does)
Zx Zy Zz VA eye So
0 0 0 1 1. Don’t let Z or up be zero length vectors

2. Don’t let Z and up be coincident vectors

University of Texas at Austin CS354 - Computer Graphics Don Fussell

gluLookAt(0,0,14, // eye (X,y,z)
0,0,0, //at(xy,z)
0,1,0); //up (X,y,2)

Same as the glTranslatef(0,0,-14) as expected

gluLookAt(1,2.5,11, // eye (x,y,z)
0,0,0, // at (X,y,2)
0,1,0); //up (X,Y,Z)

Similar to original, but just a little off angle
due to slightly perturbed eye vector

University of Texas at Austin CS354 - Computer Graphics Don Fussell

“Look At” Major Eye Changes

gluLookAt(-2.5,11,1, // eye (x,y,z)
0,0,0, // at (X,y,Z)
0,1,0); /I up (X,Y,Z)

. 11 ”
Eye is “above " the scene

gluLookAt(-2.5,-11,1, // eye (x,y,z)
0,0,0, // at (X,y,Z)
0,1,0); /l'up (X,Y,z)

Eye is “below” the scene

University of Texas at Austin CS354 - Computer Graphics Don Fussell

gluLookAt(0,0,14, //eye (X,y,2)
2,-3.0, //at(x,y,z)
0,1,0); //up(xy.2)

Original eye position, but “at” position shifted

gluLookAt(0,0,14, // eye (X,y,2)
0,0,0, /] at (X,y,2)
1,1,0); //up (x,y,2)

Eye is “below” the scene

University of Texas at Austin CS354 - Computer Graphics Don Fussell

The LookAt Function

m The GLU library contains the function gluLookAt
to form the required modelview matrix through a
simple interface

m Note the need for setting an up direction
m Still need to initialize
m Can concatenate with modeling transformations

m Example: 1sometric view of cube aligned with axes

glMatrixMode (GL MODELVIEW) :
glLoadIdentity() ;
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, O., 1.0. 0.0);

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Other Viewing APIs

® The LookAt function 1s only one possible
API for positioning the camera
® Others include

m View reference point, view plane normal, view
up (PHIGS, GKS-3D)

m Yaw, pitch, roll
m Elevation, azimuth, twist

m Direction angles

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Two Transforms 1in Sequence

® OpenGL thinks of the projective transform

as reall

FIRST
object-space
to

eye-space

SECOND
eye-space

to
clip-space

MY,
M,
MY,

s
U QU LY SO

MY,
MY,
MY,
M,

el o

0

To) e

1

MVy

y two 4x4 matrix transforms

MV, | [x,
MI/B yo
MI/14 Zo

MV | |w

xe

Ve

Ze

We

University of Texas at Austin CS354 - Computer Graphics Don Fussell

16 Multiply-Add
operations

Another
16 Multiply-Add
operations

Modelview-Projection Transform

m Matrixes can associate (combine)

"MVP,
MVP
MVP
MVP,

[\

MVP, MVP,
MVP, MVP,

MVE,

MVP, MVP,

MVE,

MVE,
MVP,

MVE;

Matrix multiplication
1s associative (but not commutative)

A(BC) = (AB)C, but ABC£CBA

N\

m Combination of the modelview and projection
matrix = modelview-projection matrix

mor often simply the “MVP” matrix

University of Texas at Austin CS354 - Computer Graphics

Don Fussell

operations, done by OpenGL driver

K P FK B [MV, MV, MV, |
R F K B |M) My, MV,
gl Ay
P, B B, B.DMY, MV, MV,
P F E, B |MY MYV, MV
N— 7

~""

concatenation is

64 Multiply-Add

Specifying the Transforms

m Specified 1n two parts

m First the projection Resulting projection matrix
m g|MatrixMode(GL _PROJECTION); r125 ¢ 0 0
m glloadldentity(); 0 1667 0 0

m glFrustum(-4, +4, // left & right
-3, +3, // top & bottom L U e
5, 80); //near & far 0 0 ! 0
m Second the model-view
m glMatrixMode(GL MODELVIEW);

Resulting modelview matrix

m glloadldentity(); 1 0 0 07
m glTranslatef(0, 0, -14); 0O 1 0 O
m So objects centered at (0,0,0) would 0 01 -14
be at (0,0,-14) in eye-space o o0 |

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Modelview-Projection Matrix

® Transform composition via matrix multiplication

125 0 0 0 71 00 0]
0 1667 0 0 010 0
0 0 -1.1333 -10667| [0 0 1 -14
0 0 -1 0 00 0 1

125 0 0 0

0 1667 0 0

o WSRO 11333 52

0 0] 14

Resulting modelview-projection matrix

University of Texas at Austin CS354 - Computer Graphics Don Fussell

®m Draw a wireframe cube
m glColor3£(1,0,0); //red
m glutWireCube(6);
m 6x6Xx6 unit cube centered at origin
(0,0,0)
m Draw a teapot in the cube
m ¢lColor31(0,0,1); // blue
m glutSolidTeapot(2.0);
m centered at the origin (0,0,0)

® handle and spout point down the X
axis

m top and bottom in the Y axis

m Aswe'd expect given a frustum
transform, the cube is in
perspective

m The teapot is too but more obvious
to observe with a wireframe cube

University of Texas at Austin CS354 -

0/ Now Draw Some Objects

Computer Graphics

Don Fussell

What We' ve Accomplished

m Simple perspective o
m With glFrustum mﬁ

m Establishes how SR
eye-space maps to clip-space ”
m Simple viewing ®
m With glTranslatef \
m Establishes how (0,0,14)

(0,0,0)
m All we really did was “wheel” the camera 14 units up the Z axis

® No actual “modeling transforms”, just viewing

®m Modeling would be rotating, scaling, or otherwise transform the
objects with the view

world-space maps to eye-space

m Arguably the modelview matrix is really just a “view” matrix in this
example

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Some Simple Modeling

® Try some modeling transforms to move teapot
m But leave the cube alone for reference

=

o

glPushMatrix(); { glPushMatrix(); { glPushMatrix(); {
glTranslatef(1.5, -0.5, 0); glScalef(1.5, 1.0, 1.5); glRotatef(30, 1,1,1);
glutSolidTeapot(2.0); glutSolidTeapot(2.0); glutSolidTeapot(2.0);
}+ glPopMatrix(); }+ glPopMatrix(); }+ glPopMatrix();

We “bracket” the modeling transform with glPushMatrix/glPopMatrix commands
so the modeling transforms are “localized” to the particular object

University of Texas at Austin CS354 - Computer Graphics Don Fussell

© O

glPushMatrix(); { glPushMatrix(); { glPushMatrix(); {
glTranslatef(1.5, -0.5, 0); glScalef(1.5, 1.0, 1.5); glRotatef(30, 1,1,1);
glutSolidTeapot(2.0); glutSolidTeapot(2.0); glutSolidTeapot(2.0);
} glPopMatrix(); } glPopMatrix(); } glPopMatrix();

We've not discussed lighting yet but per-vertex lighting allows
a virtual light source to “interact” with the object’s surface orientation and material properties

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Modelview-Projection Matrix

m [et s consider the “combined” modelview matrix
with the rotation

= glRotate(30, 1,1,1) defines a £ 0.9107 -0.2440 03333 0
rotation matrix 0.3333 09107 -0.2440 0

. ~0.2440 03333 09107 0

m Rotating 30 degrees... X 0 .

m ...around an axis in the (1,1,1) direction

1.25 0 0 0 1 0 0 0 7709107 -0.2440 0.3333 O
0 1.667 0 0 0O 1 0 O 0.3333 09107 -0.2440 O
0 0 -1.1333 -10.667 |0 O 1 -14| |-0.2440 0.3333 09107 O
0 0 -1 0 0 0 0 1 0 0 0 1
- _/ \ J o _J
Y Yo
projection view model

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Combining All Three

Matrix-by-matrix multiplication is 1 00 0 1] 09107 —02440 03333
ﬁijj’f’fge ;‘;M - 010 0 03333 09107 —0.2440
~ B = V) 0 0 1 -14 -0.2440 03333 0.9107
173 V4 O O 1 0 O
OpenGL keeps V and M “together L i 0
because eye-space is a convenient .Y B
space for lighting Nl model
125 0 0 0 09107 -0.2440 03333 O
0 1.667 0 0 0.3333 09107 -0.2440 O
0 0 -1.1333 -10.667 -0.2440 03333 09107 -14
|0 0 -1 0 Il 0 0 0 Y
e R T — — —
projcciion modelview

1.1384 -0.3050 04167 O

0.5556 15178 -0.4067 O

0.2766 -0.3778 -1.0321 5.2
| 0.2440 -0.3333 -09107 14

) - > 4

. v . .
modelview-projection

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Object- to Clip-space

modelview
X e [0.9107 -0.2440 0.3333 0 1| Xopjeer
Ve | 0.3333 0.9107 -0.2440 0 || Vopie
Z e -0.2440 0.3333 09107 -14|| Z,piews
el | 0 0 0 1 Wobject
projection
Xap] 1250 0 0 Xepe
Yap| | O 1667 0 0 Vere
Z g 0 0 -1.1333 -10.667]| | z,,,
Wapp | | O 0 -1 0 W
Y

object-to-eye-to-clip

model
S 09107 -0.2440 0.3333 O] [X,peu
Perta | _ 0.3333 09107 -0.2440 Of | YVoriewr
Z -0.2440 03333 09107 O | Z,pjecs
Wworld 0 0 O 1 Wobject
_ view
xeye 1 O 0 O xworld
yeye i 0 1 0 0 yworld
Z, 0 0 1 -14||z,,u
Weye 0 O 0 Wworld
projection
X,] 7125 0 0 Xope
Yar| | 0 1667 0 0 | |Yue
Z| | 0 0 -1.1333 -10.667] |z,.
Wclip L 0 0 -1 0 W‘ye
7
v

object-to-world-to-eye-to-clip

University of Texas at Austin CS354 -

modelview-projection

Xy] 11384 —0.3050 04167 0][X,
Yeiip 0.5556 1.5178 —=0.4067 O | | Vopeu
Zap | 02766 -03778 -1.0321 52|z
W, | 02440 -03333 09107 14 | |,
N _J
Y
object-to-clip
Computer Graphics Don Fussell

Each character, wall, ceiling, floor, and light have their own modeling transformation

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Representing Objects

m Interested in object’ s boundary

m Various approaches

® Procedural representations
m Often fractal

<€,

R

&>
ANy

,“.
NS N
AV g 4%

%, ¥

Do

AN «’a{' PINGS

4N \& 4

R
)

&
&

=
%

&>

S

: l‘r
7 <

Fractal
tree
[Philip Winston]

m Explicit polygon (triangle) meshes
m By far, the most popular method

m Curved surface patches
m Often displacement mapped

ici ' Utah Teapot
m Implicit representation tah Teapot

m Blobby, volumetric

Blobby modeling in RenderMan

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Focus on Triangle Meshes

m Easiest approach to representing object boundaries

® So what 1s a mesh and how should it be stored?
m Simplest view
m A set of triangles, each with its “own” 3 vertices
m Essentially “triangle soup”
m Yet triangles in meshes share edges by design
m Sharing edges implies sharing vertices
m More sophisticated view
m Store single set of unique vertexes in array

® Then each primitive (triangle) specifies 3 indices into array of
vertexes

®m More compact
m Vertex data size >> index size
® Avoids redundant vertex data

m Separates “topology~ (how the mesh is connected) from its
“geometry’ (vertex positions and attributes)
m Connectivity can be deduced more easily
m Makes mesh processing algorithms easier
m Geometry data can change without altering the topology

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Consider a Tetrahedron

m Simplest closed volume

m Consists of 4 triangles and 4 vertices
® (and 4 edges)

(x2,y2,72)
Ye triangle list vertex list

0: vO,v1,v2 0: (x0,y0,z0)

i l: vl,v3,v2 1: (x1,yl,zl)
(x3,y3,23) 2:v3,v0,v2 2:(x2,y2,22)

v 3:vl,v0,v3 3:(x3,y3,z3)

(xLyl,zl) topology geometry
potentially on-GPU!

v0
(x0,y0,z1)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Benefits of Vertex Array Approach

m Unique vertices are stored once

B Saves memory
®m On CPU, on disk, and on GPU

m Matches OpenGL vertex array model of operation

® And this matches the efficient GPU mode of operation

® The GPU can “cache” post-transformed vertex results by
vertex index

m Saves retransformation and redundant vertex fetching
m Direct3D has the same model

m Allows vertex data to be stored on-GPU for even faster
vertex processing
m OpenGL supported vertex buffer objects for this

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Next Lecture

m More about triangle mesh representation
m Scene graphs

University of Texas at Austin CS354 - Computer Graphics Don Fussell

