
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Anti-aliased and accelerated
ray tracing

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 2

Reading
 Required:

Watt, sections 12.5.3 – 12.5.4, 14.7
 Further reading:

A. Glassner. An Introduction to Ray Tracing. Academic
Press, 1989. [In the lab.]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 3

Aliasing in rendering
 One of the most common rendering artifacts is the
“jaggies”. Consider rendering a white polygon
against a black background:

 We would instead like to get a smoother transition:

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 4

Anti-aliasing
 Q: How do we avoid aliasing artifacts?

1. Sampling:
2. Pre-filtering:
3. Combination:

 Example - polygon:

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 5

Polygon anti-aliasing

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 6

Antialiasing in a ray tracer
  We would like to compute the average intensity in the neighborhood of

each pixel.

  When casting one ray per pixel, we are likely to have aliasing artifacts.
  To improve matters, we can cast more than one ray per pixel and

average the result.
  A.k.a., super-sampling and averaging down.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 7

Speeding it up
  Vanilla ray tracing is really slow!
  Consider: m x m pixels, k x k supersampling, and n
primitives, average ray path length of d, with 2 rays cast
recursively per intersection.
  Complexity =
  For m=1,000,000, k = 5, n = 100,000, d=8…very
expensive!!
  In practice, some acceleration technique is almost always
used.
  We’ve already looked at reducing d with adaptive ray
termination.
  Now we look at reducing the effect of the k and n terms.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 8

Antialiasing by adaptive sampling
  Casting many rays per pixel can be unnecessarily costly.
  For example, if there are no rapid changes in intensity at
the pixel, maybe only a few samples are needed.
  Solution: adaptive sampling.

  Q: When do we decide to cast more rays in a particular
area?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 9

  Let’s say you were intersecting a ray with a polyhedron:

  Straightforward method

intersect the ray with each triangle
return the intersection with the smallest t-value.

  Q: How might you speed this up?

Faster ray-polyhedron intersection

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 10

Ray Tracing Acceleration Techniques

1 N

Faster
Intersection

Fewer
Rays

Generalized
Rays

Approaches

Tighter bounds
Faster intersector

Uniform grids
Spatial hierarchies
 k-d, oct-tree, bsp
 hierarchical grids
Hierarchical
 bounding
 volumes (HBV)

Early ray
 termination
Adaptive
 sampling

Beam tracing
Cone tracing
Pencil tracing

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 11

Uniform spatial subdivision
  Another approach is uniform spatial subdivision.

Idea:

Partition space into cells (voxels)
Associate each primitive with the cells it overlaps
Trace ray through voxel array using fast incremental arithmetic to
step from cell to cell

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 12

Uniform Grids

 Preprocess scene
Find bounding box

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 13

Uniform Grids

  Preprocess scene
Find bounding box

Determine resolution

 v x y z on n n n n= ∝

3max(, ,)x y z on n n d n=

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 14

Uniform Grids

  Preprocess scene
Find bounding box
Determine resolution

Place object in cell, if
object overlaps cell

3max(, ,)x y z on n n d n=

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 15

Uniform Grids

  Preprocess scene
Find bounding box
Determine resolution

Place object in cell, if
object overlaps cell
Check that object
intersects cell

3max(, ,)x y z on n n d n=

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 16

Uniform Grids

  Preprocess scene
  Traverse grid

3D line – 3D-DDA
6-connected line

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 17

Caveat: Overlap

  Optimize for objects that overlap multiple cells

  Traverse until tmin(cell) > tmax(ray)
  Problem: Redundant intersection tests:
  Solution: Mailboxes

Assign each ray an increasing number
Primitive intersection cache (mailbox)

  Store last ray number tested in mailbox
 Only intersect if ray number is greater

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 18

Non-uniform spatial subdivision
  Still another approach is non-uniform spatial subdivision.

  Other variants include k-d trees and BSP trees.

  Various combinations of these ray intersections techniques are also
possible. See Glassner and pointers at bottom of project web page for
more.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 19

Non-uniform spatial subdivision

 Best partitioning approach - k-d trees or
perhaps BSP trees

More adaptive to actual scene structure
BSP vs. k-d tradeoff between speed from
simplicity and better adaptability

 Non-partitioning approach
Hierarchical bounding volumes
Build similar to k-d tree build

The University of Texas at Austin Department of Computer Science Don Fussell 20

Kd-tree - Build

The University of Texas at Austin Department of Computer Science Don Fussell 21

Kd-tree

RL

The University of Texas at Austin Department of Computer Science Don Fussell 22

Kd-tree

RL

RRRL

The University of Texas at Austin Department of Computer Science Don Fussell 23

Kd-tree

RL

RR

RRL RRR

RL

The University of Texas at Austin Department of Computer Science Don Fussell 24

Kd-tree

RL

RR

RRL RRR

RLLL LR

The University of Texas at Austin Department of Computer Science Don Fussell 25

Kd-tree

RL

RR

RRL RRR

RLLL LR

LLL LLR

The University of Texas at Austin Department of Computer Science Don Fussell 26

Kd-tree

RL

RR

RRL RRR

RLLL LR

LLL LLR

LLLL LLLR

The University of Texas at Austin Department of Computer Science Don Fussell 27

Kd-tree

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LLLL LLLR

The University of Texas at Austin Department of Computer Science Don Fussell 28

Kd-tree

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR

The University of Texas at Austin Department of Computer Science Don Fussell 29

Kd-tree

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 30

Surface Area and Rays
  Number of rays in a given direction that hit an
  object is proportional to its projected area

  The total number of rays hitting an object is
  Crofton’s Theorem:

For a convex body

  For example: sphere 4
SA =

4 Aπ

24S rπ=

A

2A A rπ= =

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 31

Surface Area and Rays

  The probability of a ray hitting a convex shape
  that is completely inside a convex cell equals

Pr[] o
o c

c

Sr S r S
S

∩ ∩ =

oScS

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 32

Surface Area Heuristic

t a a i b b iC t p N t p N t= + +

80i tt t=a b

it

tt

Intersection time

Traversal time

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 33

Surface Area Heuristic

a
a
Sp
S

= b
b
Sp
S

=

2n splits

a b

The University of Texas at Austin Department of Computer Science Don Fussell 34

Ray Traversal Kernel

Depth first traversal

mint

maxt *t

max *t t<

*t

min max*t t t< <
*t
min*t t<

Intersect(L,tmin,tmax) Intersect(R,tmin,tmax)Intersect(L,tmin,t*)
Intersect(R,t*,tmax)

The University of Texas at Austin Department of Computer Science Don Fussell 35

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:

Current:
Root

The University of Texas at Austin Department of Computer Science Don Fussell 36

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:
R

Current:
L

The University of Texas at Austin Department of Computer Science Don Fussell 37

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:
R

Current:
LL

The University of Texas at Austin Department of Computer Science Don Fussell 38

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:
LLR,R

Current:
LLL

The University of Texas at Austin Department of Computer Science Don Fussell 39

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:
LLR,R

Current:
LLLR

The University of Texas at Austin Department of Computer Science Don Fussell 40

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:
R

Current:
LLL

The University of Texas at Austin Department of Computer Science Don Fussell 41

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:

Current:
R

The University of Texas at Austin Department of Computer Science Don Fussell 42

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:
RR

Current:
RL

The University of Texas at Austin Department of Computer Science Don Fussell 43

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:

Current:
RR

The University of Texas at Austin Department of Computer Science Don Fussell 44

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:

Current:
RRR

The University of Texas at Austin Department of Computer Science Don Fussell 45

Kd-tree - Traversal

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 46

Variations

oct-tree kd-tree bsp-tree

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 47

Hierarchical bounding volumes
  We can generalize the idea of bounding volume acceleration with

hierarchical bounding volumes (or bounding volume hierarchies
(BVH).

  Key: build balanced trees with tight bounding volumes.

Many different kinds of bounding volumes.
Note that bounding volumes can overlap.

