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Anti-aliased and accelerated  
ray tracing  
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Reading 
 Required: 

Watt, sections 12.5.3 – 12.5.4, 14.7 
 Further reading: 

A. Glassner.  An Introduction to Ray Tracing.  Academic 
Press, 1989. [In the lab.] 
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Aliasing in rendering 
 One of the most common rendering artifacts is the 
“jaggies”.  Consider rendering a white polygon 
against a black background: 

 
 We would instead like to get a smoother transition: 
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Anti-aliasing 
 Q: How do we avoid aliasing artifacts? 

1. Sampling: 
2. Pre-filtering: 
3. Combination: 

 Example - polygon: 
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Polygon anti-aliasing 
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Antialiasing in a ray tracer 
  We would like to compute the average intensity in the neighborhood of 

each pixel.  

 
 
 
 

  When casting one ray per pixel, we are likely to have aliasing artifacts. 
  To improve matters, we can cast more than one ray per pixel and 

average the result. 
  A.k.a., super-sampling and averaging down. 
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Speeding it up 
  Vanilla ray tracing is really slow! 
  Consider: m x m pixels, k x k supersampling, and n 
primitives, average ray path length of d, with 2 rays cast 
recursively per intersection. 
  Complexity =  
  For m=1,000,000, k = 5, n = 100,000, d=8…very 
expensive!! 
  In practice, some acceleration technique is almost always 
used. 
  We’ve already looked at reducing d with adaptive ray 
termination.   
  Now we look at reducing the effect of the k and n terms. 
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Antialiasing by adaptive sampling 
  Casting many rays per pixel can be unnecessarily costly.   
  For example, if there are no rapid changes in intensity at 
the pixel, maybe only a few samples are needed. 
  Solution: adaptive sampling. 

  Q: When do we decide to cast more rays in a particular 
area? 
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  Let’s say you were intersecting a ray with a polyhedron: 

 
 
 
 
 
  Straightforward method  

intersect the ray with each triangle 
return the intersection with the smallest t-value. 

  Q: How might you speed this up? 

Faster ray-polyhedron intersection 
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Ray Tracing Acceleration Techniques 

1 N 

Faster  
Intersection 

Fewer  
Rays 

Generalized  
Rays 

Approaches 

Tighter bounds 
Faster intersector 
 
 
 
 

Uniform grids 
Spatial hierarchies 
  k-d, oct-tree, bsp 
  hierarchical grids 
Hierarchical  
  bounding 
  volumes (HBV) 

Early ray  
  termination 
Adaptive  
  sampling 
 
 
 
 

Beam tracing 
Cone tracing 
Pencil tracing 
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Uniform spatial subdivision 
  Another approach is uniform spatial subdivision. 

 
 

 
Idea: 

Partition space into cells (voxels) 
Associate each primitive with the cells it overlaps 
Trace ray through voxel array using fast incremental arithmetic to 
step from cell to cell 
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Uniform Grids 

 Preprocess scene 
Find bounding box 
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Uniform Grids 

  Preprocess scene 
Find bounding box 

 
Determine resolution 

   v x y z on n n n n= ∝

3max( , , )x y z on n n d n=
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Uniform Grids 

  Preprocess scene 
Find bounding box 
Determine resolution 

 
Place object in cell, if 
object overlaps cell 

3max( , , )x y z on n n d n=
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Uniform Grids 

  Preprocess scene 
Find bounding box 
Determine resolution 

Place object in cell, if 
object overlaps cell 
Check that object 
intersects cell 

3max( , , )x y z on n n d n=
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Uniform Grids 

  Preprocess scene 
  Traverse grid 

3D line – 3D-DDA 
6-connected line 
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Caveat: Overlap 

  Optimize for objects that overlap multiple cells 

  Traverse until tmin(cell) > tmax(ray) 
  Problem: Redundant intersection tests: 
  Solution: Mailboxes 

Assign each ray an increasing number 
Primitive intersection cache (mailbox) 

  Store last ray number tested in mailbox 
 Only intersect if ray number is greater 
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Non-uniform spatial subdivision 
  Still another approach is non-uniform spatial subdivision. 

  Other variants include k-d trees and BSP trees. 

  Various combinations of these ray intersections techniques are also 
possible.  See Glassner and pointers at bottom of project web page for 
more. 
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Non-uniform spatial subdivision 

 Best partitioning approach - k-d trees or 
perhaps BSP trees 

More adaptive to actual scene structure 
BSP vs. k-d tradeoff between speed from 
simplicity and better adaptability 

 Non-partitioning approach 
Hierarchical bounding volumes 
Build similar to k-d tree build 
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Kd-tree - Build 
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Kd-tree 

RL
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Kd-tree 

RL

RRRL



The University of Texas at Austin         Department of Computer Science        Don Fussell                 23 

Kd-tree 

RL

RR

RRL RRR

RL
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Kd-tree 

RL

RR

RRL RRR

RLLL LR



The University of Texas at Austin         Department of Computer Science        Don Fussell                 25 

Kd-tree 

RL

RR

RRL RRR

RLLL LR

LLL LLR
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Kd-tree 

RL
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RRL RRR
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LLL LLR

LLLL LLLR
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Kd-tree 

RL
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RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LLLL LLLR
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Kd-tree 

RL
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RRL RRR
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LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR



The University of Texas at Austin         Department of Computer Science        Don Fussell                 29 

Kd-tree 

RL
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RRL RRR

RLLL LR
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Surface Area and Rays 
  Number of rays in a given direction that hit an 
  object is proportional to its projected area 

  The total number of rays hitting an object is 
  Crofton’s Theorem: 

For a convex body 

  For example: sphere 4
SA =

4 Aπ

24S rπ=

A

2A A rπ= =



University of Texas at Austin    CS384G  -   Computer Graphics    Fall 2010   Don Fussell                 31 

Surface Area and Rays 

  The probability of a ray hitting a convex shape  
  that is completely inside a convex cell equals 

Pr[ ] o
o c

c

Sr S r S
S

∩ ∩ =

oScS
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Surface Area Heuristic 

t a a i b b iC t p N t p N t= + +

80i tt t=a b 

it

tt

Intersection time 

Traversal time 
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Surface Area Heuristic 

a
a
Sp
S

= b
b
Sp
S

=

2n splits 

a b 
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Ray Traversal Kernel 

Depth first traversal  

mint

maxt *t

max *t t<

*t

min max*t t t< <
*t
min*t t<

Intersect(L,tmin,tmax) Intersect(R,tmin,tmax)Intersect(L,tmin,t*)
Intersect(R,t*,tmax)
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Kd-tree - Traversal 

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:

Current:
Root
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Kd-tree - Traversal 

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:
R

Current:
L
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Kd-tree - Traversal 

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:
R

Current:
LL
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Kd-tree - Traversal 

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:
LLR,R

Current:
LLL
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Kd-tree - Traversal 

RL
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RRL RRR
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LLLL LLLR
LRLRL LRLRR

Stack:
LLR,R

Current:
LLLR
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Kd-tree - Traversal 
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Kd-tree - Traversal 
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Kd-tree - Traversal 
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Stack:
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Current:
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Kd-tree - Traversal 
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Current:
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Kd-tree - Traversal 

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR

Stack:

Current:
RRR
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Kd-tree - Traversal 

RL

RR

RRL RRR

RLLL LR

LLL LLR
LRL

LRR

LRLL

LRLR

LLLL LLLR
LRLRL LRLRR
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Variations 

oct-tree kd-tree bsp-tree 
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Hierarchical bounding volumes 
  We can generalize the idea of bounding volume acceleration with 

hierarchical bounding volumes (or bounding volume hierarchies 
(BVH). 

 
 
 

  Key: build balanced trees with tight bounding volumes. 
 
Many different kinds of bounding volumes. 
Note that bounding volumes can overlap. 


