Anti-aliased and accelerated ray tracing

Reading

- Required:

■ Watt, sections 12.5.3-12.5.4, 14.7

- Further reading:
- A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989. [In the lab.]

Aliasing in rendering

- One of the most common rendering artifacts is the "jaggies". Consider rendering a white polygon against a black background:

■ We would instead like to get a smoother transition:

Anti-aliasing

$■$ Q: How do we avoid aliasing artifacts?

1. Sampling:
2. Pre-filtering:
3. Combination:

■ Example - polygon:

Polygon anti-aliasing

Antialiasing in a ray tracer

- We would like to compute the average intensity in the neighborhood of each pixel.

- When casting one ray per pixel, we are likely to have aliasing artifacts.
- To improve matters, we can cast more than one ray per pixel and average the result.
- A.k.a., super-sampling and averaging down.

Speeding it up

- Vanilla ray tracing is really slow!
- Consider: $m \times m$ pixels, $k \times k$ supersampling, and n primitives, average ray path length of d, with 2 rays cast recursively per intersection.
- Complexity =
- For $m=1,000,000, k=5, n=100,000, d=8 \ldots$ very expensive!!
- In practice, some acceleration technique is almost always used.
- We' ve already looked at reducing d with adaptive ray termination.
- Now we look at reducing the effect of the k and n terms.

Antialiasing by adaptive sampling

- Casting many rays per pixel can be unnecessarily costly.
- For example, if there are no rapid changes in intensity at the pixel, maybe only a few samples are needed.
- Solution: adaptive sampling.

- Q: When do we decide to cast more rays in a particular area?

Faster ray-polyhedron intersection

- Let's say you were intersecting a ray with a polyhedron:

- Straightforward method
- intersect the ray with each triangle
- return the intersection with the smallest t-value.

■ Q: How might you speed this up?

Ray Tracing Acceleration Techniques

Uniform spatial subdivision

- Another approach is uniform spatial subdivision.

- Idea:
- Partition space into cells (voxels)
- Associate each primitive with the cells it overlaps
- Trace ray through voxel array using fast incremental arithmetic to step from cell to cell

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Uniform Grids

\square Preprocess scene
\quad Find bounding box

Uniform Grids

- Preprocess scene
- Find bounding box
- Determine resolution
$n_{v}=n_{x} n_{y} n_{z} \propto n_{o}$

$$
\max \left(n_{x}, n_{y}, n_{z}\right)=d \sqrt[3]{n_{o}}
$$

Uniform Grids

- Preprocess scene
- Find bounding box
- Determine resolution
- Place object in cell, if object overlaps cell

$$
\max \left(n_{x}, n_{y}, n_{z}\right)=d \sqrt[3]{n_{o}}
$$

Uniform Grids

- Preprocess scene
- Find bounding box
- Determine resolution
- Place object in cell, if object overlaps cell
- Check that object intersects cell

$$
\max \left(n_{x}, n_{y}, n_{z}\right)=d \sqrt[3]{n_{o}}
$$

Uniform Grids

Caveat: Overlap

- Optimize for objects that overlap multiple cells

- Traverse until tmin(cell) $>$ tmax (ray)
- Problem: Redundant intersection tests:
- Solution: Mailboxes
- Assign each ray an increasing number
- Primitive intersection cache (mailbox)
- Store last ray number tested in mailbox
- Only intersect if ray number is greater

Non-uniform spatial subdivision

- Still another approach is non-uniform spatial subdivision.

Octree in 3D

- Other variants include k-d trees and BSP trees.
- Various combinations of these ray intersections techniques are also possible. See Glassner and pointers at bottom of project web page for more.

Non-uniform spatial subdivision

■ Best partitioning approach - k-d trees or perhaps BSP trees
-More adaptive to actual scene structure
-BSP vs. k-d tradeoff between speed from simplicity and better adaptability

- Non-partitioning approach
- Hierarchical bounding volumes

■ Build similar to k-d tree build

Kd-tree - Build

Kd-tree

Surface Area and Rays

- Number of rays in a given direction that hit an
- object is proportional to its projected area

- The total number of rays hitting an object is $4 \pi \bar{A}$
- Crofton' s Theorem:
- For a convex body

$$
\bar{A}=\frac{S}{4}
$$

■ For example: sphere

$$
S=4 \pi r^{2} \quad \bar{A}=A=\pi r^{2}
$$

Surface Area and Rays

- The probability of a ray hitting a convex shape
- that is completely inside a convex cell equals

Surface Area Heuristic

Intersection time t_{i}

Traversal time

$$
\begin{gathered}
t_{t} \\
t_{i}=80 t_{t}
\end{gathered}
$$

$$
C=t_{t}+p_{a} N_{a} t_{i}+p_{b} N_{b} t_{i}
$$

Surface Area Heuristic

$$
p_{a}=\frac{S_{a}}{S} \quad p_{b}=\frac{S_{b}}{S}
$$

Ray Traversal Kernel

Depth first traversal

Intersect(L,tmin,tmax)

Intersect(L,tmin, t^{*}) Intersect(R, t^{*}, tmax $)$

Intersect(R,tmin,tmax)

Kd-tree - Traversal

Stack:

Current: Root

The University of Texas at Austin

Kd-tree - Traversal

Stack:
R

Current:
L

Kd-tree - Traversal

Stack:
R

Current:
LL
The University of Texas at Austin

Kd-tree - Traversal

Kd-tree - Traversal

Stack:
LLR, R

Current: LLLR

The University of Texas at Austin

Kd-tree - Traversal

Stack:
R

Current:
LLL
The University of Texas at Austin

Kd-tree - Traversal

Stack:

Current:
R

Kd-tree - Traversal

Stack: RR

Current: $R L$

Kd-tree - Traversal

Kd-tree - Traversal

Kd-tree - Traversal

Variations

Hierarchical bounding volumes

- We can generalize the idea of bounding volume acceleration with hierarchical bounding volumes (or bounding volume hierarchies (BVH).

...until you reach the leaf nodes - the primitives.
- Key: build balanced trees with tight bounding volumes.

Many different kinds of bounding volumes.
Note that bounding volumes can overlap.
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

