Intro to OpenGL 11

Don Fussell
Computer Science Department

The University of Texas at Austin

o EmmmEmESSSE

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Where are we?

m Last lecture, we started the OpenGL pipeline with
our example code

m This lecture we’ll continue that

OpenGL API Example

glShadeModel(GL _SMOOTH); // smooth color interpolation
glEnable(GL DEPTH TEST); // enable hidden surface removal

glClear(GL _COLOR_BUFFER BIT|GL DEPTH BUFFER BIT);

glBegin(GL TRIANGLES); // every 3 vertexes makes a triangle
glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
glVertex3£(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

glColordub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

GLUT API Example

#include <GL/glut.h> // includes necessary OpenGL headers

| simple triangle

void display() {
// <<insert code on prior slide here >>
glutSwapBuffers();

h

void main(int argc, char **argv) {
// request double-buffered color window with depth buffer
glutlnitDisplayMode(GLUT RGBA | GLUT DOUBLE | GLUT DEPTH);
glutlnit(&argc, argv);
glutCreateWindow(“simple triangle”);
glutDisplayFunc(display); // function to render window
glutMainLoop();

Simplified Graphics Pipeline

| Application |

_____________ l_________________-

| Vertex batching & assembly | OpenGL API

| Clipping |

‘ Really lots more steps

than this but these

are the non-trivial operations
l in our simple triangle
example

| NDC to window space |

NDC = Normalized . :
: . Rasterization
Device Coordinates,

this is a [-1,+1]? cube v

| Fragment shading |

v

| Depth testing |<—> Depth buffer

v
|C010r update |—> Framebuffer

Application

®m What' s the app do?
® Running on the CPU

m Initializes app process
m Creates graphics resources
such as
® OpenGL context
®m Windows

m Handles events

® [nput events, resize windows,
etc.

® Crucial event for graphics:
Redisplay
® Window needs to be drawn
—so do it

m GPU gets involved at this
point

| Application |

4

| Vertex batching & assembly |

| Clipping |
4

| NDC to window space |
’

| Rasterization |

!

| Fragment shading |

v

| Depth testing |<—>

Depth buffer

v

| Color update |—>

Framebuffer

| simple triangle

App Stuff

®m GLUT 1s doing the heavy lifting
m Talking to Win32, Cocoa, or Xlib for you

m Other alternatives: SDL, etc.
#include <GL/glut.h> // includes necessary OpenGL headers

vold display () {
// << insert code on prior slide here >>

glutSwapBuffers () ;

vold main(int argc, char **argv) {
// request double-buffered color window with depth buffer
glutInitDiSplayMode(GLUT_RGBA | GLUT DOUBLE | GLUT DEPTH);
glutInit (&argc, argv);
glutCreateWindow (“simple triangle”);
glutDisplayFunc (display); // function to render window

glutMainLoop () ;
} display function is being registered as a “callback”

Rendering - the display Callback

glShadeModel (GL_SMOOTH); // smooth color interpolation Graphics
glEnable (GL _DEPTH TEST); // enable hidden surface removal state
setting
Framebuffer
glClear (GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT); SN
clearing
\
glBegin (GL TRIANGLES); { // every 3 vertexes makes a triangle
glColor4ub (255, 0, 0, 255); // RGBA=(1,0,0,100%)
glvVertex3f(-0.8, 0.8, 0.3); // XYz=(-8/10,8/10,3/10)
Triangle
glColor4ub (0, 255, 0, 255); // RGBA=(0,1,0,100%) .
glVertex3f(0.8, 0.8, -0.2); // XYz=(8/10,8/10,-2/10) rendering
glColor4ub (0, 0, 255, 255); // RGBA=(0,0,1,100%)
glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10) J

} glEnd();

Graphics State Setting

"~ simple tiangle

® Within the draw routine

glShadeModel (GL SMOOTH); // smooth color interpolation
glEnable (GL DEPTH TEST); // enable hidden surface removal

glClear (GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT) ;
glBegin (GL TRIANGLES); { // every 3 vertexes makes a triangle

glColor4ub (255, 0, 0, 255); //
glvertex3f(-0.8, 0.8, 0.3); //

glColor4ub (0, 255, 0, 255); //
glVertex3f(0.8, 0.8, -0.2); //

glColor4ub (0, 0, 255, 255); //
glVertex3f(0.0, -0.8, -0.2); //
} glEnd() ;

RGBA=(1,0,0,100%)
XYz=(-8/10,8/10,3/10)

RGBA=(0,1,0,100%)
XYZ=(8/10,8/10,-2/10)

RGBA=(0,0,1,100%)
XYZ=(0,-8/10,-2/10)

graphics context state is “stateful” (sticky) so technically

doesn’t need to be done every time display is called

State Updates

m ShadeModel(SMOOTH)

requests smooth color
interpolation
m changes fragment shading state
m alternative is “flat shading”

Enable(DEPTH_TEST) enables
depth buffer-based hidden
surface removal algorithm

State updates happen in
command sequence order

In fact, all OpenGL commands
are in a stream that must
complete in order

University of Texas at Austin CS354 - Computer Graphics

I Application |

4

| Vertex batching & assembly

| Clipping |
4

| NDC to window space |
v

| Rasterization |

!

>| Fragment shading |

v

>| Depth testing |<—>

Depth buffer

v

| Color update I—>

Framebuffer

Don Fussell

i Lempe rangi g

Clearing the buffers

® Within the draw routine

glShadeModel (GL SMOOTH); // smooth color interpolation
glEnable (GL _DEPTH TEST); // enable hidden surface removal

glClear (GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT) ;

glBegin (GL TRIANGLES) ; // every 3 vertexes makes a triangle
glColor4ub (255, 0, 0, 255); // RGBA=(1,0,0,100%)
glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

glColor4ub (0, 255, 0, 255); // RGBA=(0,1,0,100%)
glVertex3f(0.8, 0.8, -0.2); // XY7z=(8/10,8/10,-2/10)

glColor4ub (0, 0, 255, 255); // RGBA=(0,0,1,100%)
glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd () ;

) Buffer Clearing

e New frame needs to reset | Application I
entire color buffer to |
background™ or “clear

e | Vertex batching & assembly |

® Avoids having remnants of |_4—|
prior frame persist Clipping

® Needed if can't guarantee I
%;e;lrl}é pixel is touched every | ND @Y o e |
m Depth buffer needs to be y
cleared to “farthest value” | Rasterization |
® More about depth buffering |
later

. . . |Fragment shading |
m Special operation in OpenGL T

» Hardware wants clears to run at .
memory-saturating speeds | Depth testing |‘_> Depth buffer [€

m Still in-band with command y
stream |C010r update I—> Framebuffer [€

Clear Values and Operations

® OpenGL commands to set clear values

m glClearColor for RGBA color buffers
m Example: glClearColor(0,0,0,1);
m Clear to black with 100% opacity
m Initial clear value is (0,0,0,0) so black with 0% opacity
m glClearDepth for depth buffers

m Example: glClearDepth(1.0);
m Clear to farthest depth value, for [0,1] range
m Initial depth clear value is 1.0 so farthest depth value

m Neither commands does the actual clear operation...

m That" s done by glClear(mask)
m Mask parameter indicates buffers to clear
= GL_ COLOR BUFFER BIT, GL DEPTH BUFFER BIT
m Bitwise-OR (|) them together
= Also GL_STENCIL BUFFER BIT, GL ACCUM BUFFER BIT

m Allows multiple buffers (e.g. depth & color) to be cleared in single
operation, possibly in parallel

(2 Batching and Assembling Vertices

m glBegin and glEnd designate
a batch of primitives

® Begin mode of
GL TRIANGLES means every
3 vertexes = triangle

m Various vertex attributes

m Position attribute sent with
glVertex™* commands

m Also colors, texture
coordinates, normals, etc.

m glVertex™ assembles a vertex
and puts 1t into the primitive

batch

m Other vertex attribute
commands such as glColor*
have their attributes “latched”
when glVertex™ assembles a

vertex

| Application |

4

| Vertex batching & assembly

| Clipping |
4

| NDC to window space |
v

| Rasterization |

!

| Fragment shading |

v

| Depth testing |<—>

Depth buffer

v

| Color update I—>

Framebuffer

Assembling a Vertex

glVertex* command assembles a complete vertex

g1C010r4f PRl
S
/
glColor3f \sl R ‘G ‘B ‘A |\, / \\
1Color4ub, etc. \
. ¢+ [RIGIBIA] \

glTexCoord2f

~ ISITIRIO]
glTexCoord3s S ‘ B ‘ R ‘ Q |._> ->
glTexCoord4i, etc. MM to

trzangle

gINormal3f \ \ IX IY IZ IWI / assembly

oINormal3s ;’lNX ‘Ny ‘NZ I/'\\\ ~1— ’,/

glNormal3b, etc.
assemble a vertex ‘X ‘Y ‘Z ‘W ‘

with all its attributes / f \

glVertex2s glVertex3f glVertex4d

—_— e ==

Vertex Attribute Commands

® OpenGL vertex attribute commands follow a regular pattern
m gl-prefix :: common to all OpenGL API calls
m Vertex, Normal, TexCoord, Color, SecondaryColor, FogCoord, VertexAttrib,
etc.
m Name the semantic meaning of the attribute
m VertexAttrib is for generic attributes

m Used by vertex shaders where the shader determines “meaning” of attributes
m Attribute zero & Vertex are “special”—they latch the assembly of a vertex

m 1,2, 3,4 :: Number of components for the attribute

m For an attribute with more components than the number, sensible defaults apply
m For example, 3 for Color means Red, Green, Blue & Alpha assumed 1.0

mf 1,s,b,d ub, us, ui

m Type of components: float, integer, short, byte, double, unsigned byte, unsigned
short, unsigned integer

® v :: means parameters are passed by a pointer
m Instead of immediate values

® Consider glColordub and glVertex3fv

glColor4ub(red, green, blue, alpha);

P4 e

Belongs to Meaning Number of
OpenGL of attribute components

A Rl

glVertex3 VQDSt GL{float v[3]);

Vector arguments

Assemble a Triangle

® Within the draw routine

glBegin (GL TRIANGLES) ;
glColor4ub (255, 0, 0, 255);
glVertex3f (-0.8, 0.8, 0.3);

glColor4ub (0, 255, 0, 255);
glVertex3f(0.8, 0.8, -0.2);

glColord4ub (0, 0, 255, 255);
glVertex3f(0.0, -0.8, -0.2);

glEnd () ;

}

First
vertex

Second
vertex

Third
vertex

,

7 | simple triangle

First
triangle

glBegin Primitive Batch Types

e o Va V3\ Vo Vs Va_ Vs
Vse oV, VS/ Vo o Vs/) V2 VS@VZ
o o
Vo Vi Vo V3 Vo V2 Vo Vg
GL_POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP
Vv
V4 V3 4 V3 V3 V1
V2 V5
" " AAA
Vs
VG V4 V2 V.
Vo Vi Vo V, 0
GL_POLYGON GL_TRIANGLES GL_TRIANGLE_STRIP
VS V4
V3 Vs Vs Vs Vs
@ V2 V3
VZ V6 V1
YA A
1 V
V V 2
VO V3 0 2
GL_TRIANGLE_FAN GL_QUADS GL_QUAD_STRIP

W Assembly State Machines

® Fixed-function hardware performs primitive assembly
m Based on glBegin's mode

m State machine for GL. TRIANGLES

Vertex /

Begin(TRIANGLES) Emit Triangle

vertexes

GL TRIANGLE STRIP

End

two
vertexes

Vertex /
Emit Reverse
Triangle

Vertex /

Vertex Emit Triangle

Begin(TRIANGLE _
STRIP)

two
vertexes

GL POINTS and GL LINES

Vertex /
Emit Point

Begin(POINTS))
Vertex

Emit Line

Begin(LINES)

Actual hardware state machine handles all OpenGL begin modes, so rather complex

CS 354

Triangle Assembly

| Application |

®m Now we have a triangle '
assembled | Vertex batching & assembly |

m Later, we'll generalize how —
Clipping

the vertex positions get |
transformed | NDC to window space |
® And other attributes might be 1
processed t00 | Rasterization |
® For now, just assume the |
XYZ position passed to | Fragment shading |
glVertex3f position is in ¥
NDC space |Depth testing |<—> Depth buffer
v

|C010r update I—> Framebuffer

CS 354

® Think of drawing into a [-1,+1]° cube

(-1.8, 0.8, 0.3) (-0.8, 0.8, -0.2)

origin at (0,0,0)

(0, -0.8, -0.2)

Clipping

®m What if any portion of our triangle extended beyond the NDC
range of the [-1,+1]° cube?
® Only regions of the triangle [-1,+1]° cube should be rasterized!

® No clipping for our simple triangle
® This situation is known as “trivial accept”

® Because all 3 vertices in the [-1,+1]3 cube

(-0.8, 0.8,0.3) (-0.8, 0.8,-0.2)

Triangles are %
convex, so entire

triangle must also

be in the cube if the

vertexes are

origin at (0,0,0)

(0,-08,-02) &)

Triangle Clipping

| Application |

® Triangles can straddle !
| Vertex batching & assembly |

the NDC cube
m Happens with lines too | Clipping |
m |n this case, we must [N ld |
i BE . NDC to window space
clip” the triangle to the T >
NDC cube |Rasterizati0n |
® This 1s an involved ’
process but one that must | Fragment shading |
be done v
| Depth testing |<—> Depth buffer
{

|C010r update I—> Framebuffer

Consider a Different Triangle

® Move left vertex so it’ s X =-1.8
m Result 1s a clipped triangle

(-0.8, 0.8, -0.23,

(-1.8, 0.8, 0.

S

origin at (0,0,0)

(0,-0.8,-02),

Clipped and Rasterized Normally ~ Visualization of NDC space

Notice triangle is “poking out” of the cube;,
this is the reason that should be clipped

Clipping Complications

® Given primitive may be clipped by multiple cube faces
m Potentially clipping by all 6 faces!

®m Approach

m Four possibilities
m Face doesn'’t actually result in any clipping of a triangle
m Triangle is unaffected by this plane then
m Clipping eliminates a triangle completely
m All 3 vertices on “wrong” side of the face’s plane
m Triangle “tip” clipped away
m [eaving two triangles
m Triangle “base” is clipped away
m Leaving a single triangle
m Strategy: implement recursive clipping process

m “Two triangle” case means resulting two triangles must be clipped by
all remaining planes

Attribute Interpolation

® When splitting triangles for clipping, must also
interpolate new attributes
m For example, color
m Also texture coordinates

m Back to our example
m BLUEx%0.8/1.8 + REDx1/1.8
% (0,0,1,1)x0.8/1.8 + (1,0,0,1)x1/1.8
m (0.444,0,.555,1) or MAGENTA

Weights:
1/1.8
0.8/1.8, sum to 1

What to do about this?

m Several possibilities

m Require applications to never send primitives that
require clipping
® Wishful thinking
® And a cop-out—makes clipping their problem

m Rasterize into larger space than normal and discard
pixels outsize the NDC cube
m Increases useless rasterizer work
m Requires additional math precision in the rasterizer

m Worse, creates problems when rendering into a projective clip
space (needed for perspective)

m Something for a future lecture
m Break clipped triangles into smaller triangles that
tessellate the clipped region...

Recursive process can make 4 triangles
And it gets worse with more non-trivial clipping

NDC to Window Space

| Application |
m NDC is “normalized” to :

| Vertex batching & assembly |

the [-1,+1]° cube

® Nice for clipping | Clipping |

Depth buffer

® But doesn’ t yet map to 4
pixels on the screen [NDC to window space |
+
m Next: a transform from [Rasteri 00|
NDC space to window |
space |Fragment shading |
v
| Depth testing |<—>
v

| Color update I—>

Framebuffer

Viewport and Depth Range

® OpenGL has 2 commands to configure the state to
map NDC space to window space
m glViewport(GLint vx, GLint vy, GLs1ze1 w, GLsize1 h);

m Typically programmed to the window' s width and height for w
& h and zero for both vx & vy

m Example: glViewport(0, 0, window width, window height);
m glDepthRange(GLclampd n, GLclampd f);

m 1 for near depth value, f for far depth value
® Normally set to glDepthRange(0,1)
® Which is an OpenGL context’ s initial depth range state
® The mapping from NDC space to window space

depends on vx, vy, w, h, n, and d

OpenGL Data Type Naming

®m The OpenGL specification allow an implementation to specify how
language data types map to OpenGL API data types

m GLfloat is usually typedef'ed to float but this isn’t necessarily true
m Same for GLint, GLshort, GLdouble
m But is true in practice

m GLbyte 1s byte-sized so expected it to be a char

m GLubyte, GLushort, and GLuint are unsigned versions of GLbyte,
GLshort, and GLint

m Certain names clue you into their parameter usage

m GLsizei i1s an integer parameter that is not allowed to be negative

m An GL _INVALID VALUE is generated if a GLsizei parameter is ever
negative

m GLclampd and GLclampf are the same as GLfloat and GLdouble, but
indicate the parameter will be clamped automatically to the [0,1] range

m Notice
m glViewport uses GLsizei for width and height
m glDepthRange uses GLclampd for near and far

OpenGL Errors

OpenGL reports asynchronously from your commands

m Effectively, you must explicitly call glGetError to find if any prior
command generated an error or was otherwise used incorrectly

m glGetError returns GL. NO ERROR if there is no error
m Otherwise an error such as GL_INVALID VALUE is returned
Rationale

®m OpenGL commands are meant to be executed in a pipeline so the error
might not be identified until after the command’s function has returned

m Errors might be detected by hardware that isn’t actually the CPU
m Also forcing applications to check return codes of functions is slow
m [t's inappropriate for a high-performance API such as OpenGL
So 1f you suspect errors, you have to poll for them
m Learn to do this while you are debugging your code
m [f something fails to happen, suspect there’s an OpenGL errors
Also commands that generated an error are ignored

m The only exception is GL_ OUT _OF MEMORY which results in
undefined state

W/ Mapping NDC to Window Space

m Assume (x,y,z) is the NDC coordinate that's
passed to glVertex3f in our simple triangle
example

® Then window-space (w,,w,,w,) location 1s
mw, = (W2)xx+v, +w/2
mw, = (h/2)xy + v, +h/2 X means scalar
Y Y multiplication here
mw, = [({-n)/2]xz + (n+1)/2

Where 1s glViewport set?

m The simple triangle program never calls glViewport

m That’ s OK because GLUT will call glViewport for you if you don’ t
register your own per-window callback to handle when a window 1s
reshaped (resized)

m Without a reshape callback registered, GLUT will simply call
glViewport(0, 0, window width, window height);

m Alternatively, you can use glReshapeFunc to register a
callback

® Then calling glViewport or otherwise tracking the window height
becomes your application’ s responsibility

m Example reshape callback:
void reshape(int w, int h) {
glViewport(0, 0, w, h);
h

m Example registering a reshape callback:
glReshapeFunc(reshape);

® FYI: OpenGL maintains a lower-left window-space origin
m Whereas most 2D graphics APIs use upper-left

What about glDepthRange?

m Simple applications don't normally need to call
glDepthRange

® Notice the simple triangle program never calls
glDepthRange
m Rationale

® The 1nitial depth range of [0,1] is fine for most
application

m [t says the entire available depth buffer range should be
used
® When the depth range 1s [0,1] the equation for
window-space z simplifies to wz = Vaxz + ¥

m Assume the window 1s 500x500 pixels
® So glViewport(0,0,500,500) has been called

(-0.8, 0.8, 0.3) (-0.8, 0.8,-0.2)

origin at (0,0,0)

(0, -0.8, -0.2)

Ze RIS
VD
of | G2 | YA FI1
N4

m First vertex :: (-0.8, 0.8, 0.3)
mw, = (W/2)xx+v, +w/2=250%(-0.8) + 250 = 50
= w, = (h/2)y + v, + h/2 = 250%(0.8) + 250 = 450
s w, = [(f-n)/2]xz + (n+)/2 = 0.65

m Second vertex :: (0.8, 0.8, -0.2)
mw, = (W/2)xx+v, +w/2=250%(-0.8) + 250 = 50
= w, = (h2)y + v, + h/2 = 250%(0.8) + 250 = 450
s w, = [(f-n)/2]xz + (n+)/2 = 0.4

® Third vertex :: (0, -0.8, -0.2)
Bw, = (W/2)xx+v, +w/2=250x0+250=250
mw, = (W/2)y + v, + h/2 = 250x(-0.8) + 250 = 50
s w, = [(f-n)/2]xz + (n+)/2 = 0.4

Rasterization

| Application |

® Process of converting a !

| Vertex batching & assembly |

clipped triangle into a

set of sample locations [Clipping |
covered by the triangle 4

| NDC to window space |

v

| Rasterization |

!

| Fragment shading |

v

® Also can rasterize points
and lines

| Depth testing |<—>

Depth buffer

v

| Color update I—>

Framebuffer

Determining a Triangle

m Classic view: 3 points m Rasterization view: 3
determine a triangle oriented edge equations
= Given 3 vertex positions, we determine a triangle

determine a triangle

m Hence glVertex3t/
glVertex3f/glVertex3f

Each oriented edge equation in form:
A*x + B*y + C>078

Oriented Edge Equations

Ax+By+C > 0

Ax+By+C < 0

Step back: Why Triangles?

m Simplest linear primitive with area

m [f it got any simpler, the primitive would be a line (just 2
| vertexes)

® Guaranteed to be planar (flat) and convex (not concave)
® Triangles are compact

m 3 vertexes, 9 scalar values 1n affine 3D, determine a triangle

® When in a mesh, vertex positions can be “shared” among
adjacent triangles

® Triangles are simple

m Simplicity and generality of triangles facilitates elegant,
hardware-amenable algorithms

m Triangles lacks curvature

m BUT with enough triangles, we can piecewise approximate
just about any manifold

® We can subdivide regions of high curvature until we
reach flat regions to represent as a triangle

—r A TN
=

—

Wi
A
: LL{. x4l m

%

b/ JAN'%
”0 \ v AA
A \F "II l AN

VAR A DN

RN S

VR RVNK TSN LRI orpesintly

“4“‘"\‘\\"‘““ ‘Ns ,/ o pE

iy Ay sk AR g ANAYAVA y
S s { :: 4= {

iy Ay

A N
oA
FRRRET 4
R T
Ve 0,
R

Face meshed
with triangles

Concave vs. Convex

Cconvex

~g Non-convex

m Region 1s convex 1f any two points can be connected by a line
segment where all points on this segment are also 1n the region

m Opposite 1S non-convex
m Concave means the region is connected but NOT convex

m Connected means there’ s some path (not necessarily a line) from
every two points in the region that is entirely in the region

Inside Triangle Test

m Evaluate edge equations at grid of sample points

m If sample position is “inside” all 3 edge equations, the position is
“within” the triangle
m Implicitly parallel—all samples can be tested at once

00000000000000000000000000000000000000
e Good for CO000E NI e000000000000C 0000
oooooooooeooaooooooooooooooooooooooooo
hardware ”
implementation

* Pixel-planes

* Pineda tiled*53'32“3
: Ao nooooooooooo *"‘o*%‘*o*
extension ‘. ...4‘4 3 y...

T 000
ooooooooooooooo

Other Rasterization Approaches

m Subdivision approaches %
m Easy to split a triangle into 4 triangles

m Keep splitting triangles until they are slightly smaller
than your samples
m Often called micro-polygon rendering

m Chief advantage is being able to apply displacements during
the subdivision

m Edge walking approaches

m Often used by CPU-based rasterizers mé}
® Much more sequential than Pineda approach i

m Work efficient and amendable to
fixed-point implementation

Micropolygons

m Rasterization becomes a geometry dicing process
m Approach taken by Pixar

m For production rendering when scene detail and quality is at a premium;
interactivity, not so much

m High-level representation is generally patches rather than mere triangles

Displacement mapping of a meshed sphere [Pixar, RenderMan]

Scanline Rasterization

mFind a “top” to the triangle
m Now walk down edges

Scanline Rasterization

®m Move down a scan-line, keeping track of the left
and right ends of the triangle

Scanline Rasterization

m Repeat, moving down a scanline

m Cover the samples between the left and right
ends of the triangle 1n the scan-line

Scanline Rasterization

m Process repeats for each scanline

mEasy to “step’ down to the next scanline based
on the slopes of two edges

Scanline Rasterization

m Eventually reach a vertex

m Transition to a different edge and continue filling
the span within the triangle

Scanline Rasterization

m Until you finish the triangle

® Friendly for how CPU memory arranges an image as a 2D
array with horizontal locality

m Layout 1s good for raster scan-out too

Creating Edge Equations

® Triangle rasterization need edge equations
®m How do we make edge equations?

® An edge 1s a line so determined by two points

m Each of the 3 triangle edges 1s determined by two of the
3 triangle vertexes (L, M, N)

N=(Nx,Ny) How do we get

A*x+B*y+C>0
M=(Mx,My)

for each edge
from L, M, and N?

Edge Equation Setup

® How do you get the coefficients A, B, and C?
® Determinants help—consider the LN edge:

N,-L, N,-L,
B-L, F-L

m Expansion: (Ly-Ny)xPx + (Nx-Lx)xPy + NyxLx-NxxLy > 0

= Ay = Ly-Ny
m B, = Nx-Lx
m C, = NyxLx-NxxLy

> ()

or more
succinctly

® Geometric interpretation: twice
signed area of the triangle LPN

N-L
P-L

Pis an
arbitrary point

> ()

. N=(Nx,Ny)

P=(Px,Py,

L=(Lx,Ly)

' Triangle Vertices in Screen Space

® Assume the window 1s 500x500 pixels
m So glViewport(0,0,500,500) has been called

(-0.8, 0.8, 0.3) (0.8, 0.8,-0.2)

origin at (0,0,0)

(0, -0.8, -0.2)

Ze RIS
VD
of | G2 | YA FI1
N4

m First vertex :: (-0.8, 0.8, 0.3)
mw, = (W/2)xx+v, +w/2=250%(-0.8) + 250 = 50
= w, = (h/2)y + v, + h/2 = 250%(0.8) + 250 = 450
s w, = [(f-n)/2]xz + (n+)/2 = 0.65

m Second vertex :: (0.8, 0.8, -0.2)
B w, = (W/2)Xx + v+ w/2 =250%(0.8) + 250 = 450
= w, = (h2)y + v, + h/2 = 250%(0.8) + 250 = 450
s w, = [(f-n)/2]xz + (n+)/2 = 0.4

® Third vertex :: (0, -0.8, -0.2)
Bw, = (W/2)xx+v, +w/2=250x0+250=250
mw, = (W/2)y + v, + h/2 = 250x(-0.8) + 250 = 50
s w, = [(f-n)/2]xz + (n+)/2 = 0.4

~ Screen Space Coordinates of Triangle

® Assume the window 1s 500x500 pixels
m So glViewport(0,0,500,500) has been called

L=(50, 450, 0.6 N=(450,450,0.4)

center at (250,250)

origin at (0,0)

M=(250,50,0.4)

sgx ?;\,JE.?.L}U_ ‘<» ;A‘

[lof | G | W
2 Look at the LN edge
\\':f > \{ <Y,

= Expansion:
(Ly-Ny)xPx + (Nx-Lx)xPy + NyxLx-NxxLy >
0
mA; = Ly-Ny=450-450=0
mB, = Nx-Lx =50-450 = -400
m(C, = NyxLx-NxxLy = 180,000
m [s center at (250,250) 1n the triangle?
mA (X 250+ B x250+ C =777
m(0 x250-400 x 250 + 180,000 = 80,000
80,000 > 0 so (250,250) 1s 1n the triangle

W, All Three Edge Equations

m All three triangle edge equations:

N-P
M -P

> ()

N-L
P-L

> ()

P-L
M - L

m Satisfy all 3 and P 1s in the triangle

® And then rasterize at sample location P

m Caveat: if

N-L
M - L

<0

reverse the

> ()

comparsion sense

Water Tight Rasterization

m Two triangles often share a common edge

® Indeed in closed polygonal meshes, every triangle shares its edges
with as many as three other triangles

= Called adjacent or “shared edge” triangles
® Crucial rasterization property
m No double sampling (hitting) along the shared edge
m No sample gaps (pixel fall-out) along the shared edge

m Samples along the shared edge must be belong to exactly one of
the two triangles

m Not both, not neight
m Water tight rasterization 1s crucial to many higher-level

algorithms; otherwise, rendering artifacts

m Possible artifact: if pixels hit twice on an
edge, the pixel could be double blended

m Example application: Stenciled
Shadow Volumes (SSV) —-~

Water Tight Rasterization Solution

m First “snap” vertex positions to a grid
® Grid can (and should) be sub-pixel samples
m Results 1n fixed-point vertex positions

® Fixed-point math allows exact edge computations

® Surprising? Ensuring robustness requires discarding
€XCESSs precision

®m Problem

®m What happens when edge equation evaluates to exactly
zero at a sample position?

® Need a consistent tight breaker

54S P INE
of | &3 | ;"‘ e
gzéu (A &zvp/
o\, b/ /e]
\\':i P /V:i:‘—/./

m Look at edge equation coefficients

m Tie-breaker rule when edge equation
evaluates to zero

m “Inside” edge when edge equation is zero and
A>0when A #0,orB>0when A=0

m Complete coverage determination rule
mif (B(x,y) > 0] (B(x,y)==0 && (A!=0?A>0:B>
0)))

sample at (X,y) 1s 1nside edge

Zero Area Triangles

®m We reverse the edge equation comparison sense 1f
the (signed) area of the triangle 1s negative
m What 1f the area 1s zero?
® Linear algebra indicates a singular matrix
® Need to cull the primitive
m Also useful to cull primitives when area 1s
negative

® OpenGL calls this face culling
m Enabled with glEnable(GL CULL FACE)
® When drawing closed meshes, back face culling can

avold drawing primitives assured to be occluded by
front faces

Torus drawn in wire-frame
without back face culling

Notice considerable extraneous
triangles that would normally
be occluded

Torus drawn 1n wire-frame
with back face culling

By culling back-facing (negative
signed area) triangles, fewer
triangles are rasterized

Simple Fragment Shading

m For all samples (pixels) | Application |
within the triangle, evaluate y

the interpolated color | Vertex batching & assembly |

® Requires having math to I—*—l
determine color at the sample Clipping

(x,y) location y
| NDC to window space |

v

| Rasterization |

!

| Fragment shading |

v

| Depth testing |<—>

Depth buffer

v

| Color update |—>

Framebuffer

w0, Color Interpolation

® Our simple triangle 1s drawn with smooth color
interpolation

m Recall: glShadeModel(GL SMOOTH)

m How i1s color interpolated?

® Think of a plane equation to computer each color component
(say red) as a function of (x,y)

m Just done for samples positions within the triangle

" "n__
redness"=A _,x+B _,yv+C.

Setup Plane Equation

= Setup plane equation to solve for “red” as a

function of (x,y)

Setup system of
equations

Solve for plane

equation coefficients
A, B, C

L
M
N

_Nred

y

3/

Y

L red

M red

: Ared

B red

Do the same for green, blue, and alpha (opacity)...

Cred |

red
red

red i

More Intuitive Way to Interpolate

m Barycentric coordinates

N
Area(PMN)

Area(LMN)

Area(LPNY) B
Area(LMN)

Area(LMB) v
Area(LMN)

Note: a+B+vy=0
I M by construction

attribute(P) = axattribute(L) + Pxattribute(M) + yxattribute(N)

W/ Hardware Triangle Rendering Rates

® Top GPUs can setup over a billion triangles
per second for rasterization

® Triangle setup & rasterization 1s just one of
the (many, many) computation steps in
GPU rendering

Remaining Steps

® Depth interpolation
m Color update
m Scan-out to the display

m Next time...

W) Programming tips

m 3D graphics, whether OpenGL or Direct3D
or any other API, can be frustrating

® You write a bunch of code and the result 1s

Nothing but black window, where did your
rendering go??

Things to Try

Set your clear color to something other than black!

m It is easy to draw things black accidentally so don’ t make black the clear color

m But black is the initial clear color
Did you draw something for one frame, but the next frame draws nothing?

m Are you using depth buffering? Did you forget to clear the depth buffer?
Remember there are near and far clip planes so clipping in Z, not just X & Y
Have you checked for glGetError?

m (Call glGetError once per frame while debugging so you can see errors that occur

m For release code, take out the glGetError calls
Not sure what state you are in?

m Use glGetlntegerv or glGetFloatv or other query functions to make sure that
OpenGL’ s state is what you think it is

Use glutSwapBuffers to flush your rendering and show to the visible window
m Likewise glFinish makes sure all pending commands have finished

Try reading
m http://www.slideshare.net/Mark Kilgard/avoiding-19-common-opengl-pitfalls
m This is well worth the time wasted debugging a problem that could be avoided

Next Lecture

® Finish OpenGL pipeline
® Transforms and Graphics Math

m [nterpolation, vector math, and number representations for
computer graphics

Thanks

m Presentation approach and figures from
= David Luebke [2003]
m Brandon Lloyd [2007]

m Geometric Algebra for Computer Science
[Dorst, Fontijne, Mann]

mvia Mark Kilgard

