
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Intro to OpenGL II

Don Fussell
Computer Science Department

The University of Texas at Austin

Where are we?

 Last lecture, we started the OpenGL pipeline with
our example code

 This lecture we’ll continue that

OpenGL API Example

glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES); // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

GLUT API Example

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
 // << insert code on prior slide here >>
 glutSwapBuffers();
}
void main(int argc, char **argv) {
 // request double-buffered color window with depth buffer
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
 glutInit(&argc, argv);
 glutCreateWindow(“simple triangle”);
 glutDisplayFunc(display); // function to render window
 glutMainLoop();
}

CS 354

Simplified Graphics Pipeline
Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update

OpenGL API

Framebuffer

NDC to window space

NDC = Normalized
Device Coordinates,
this is a [-1,+1]3 cube

Really lots more steps
than this but these
are the non-trivial operations
in our simple triangle
example

Depth buffer

Application

  What’s the app do?
Running on the CPU

  Initializes app process
Creates graphics resources
such as

 OpenGL context
 Windows

  Handles events
Input events, resize windows,
etc.
Crucial event for graphics:
Redisplay

 Window needs to be drawn
—so do it
 GPU gets involved at this
point

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

7
App Stuff

 GLUT is doing the heavy lifting
Talking to Win32, Cocoa, or Xlib for you
Other alternatives: SDL, etc.

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
 // << insert code on prior slide here >>
 glutSwapBuffers();
}

void main(int argc, char **argv) {
 // request double-buffered color window with depth buffer
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
 glutInit(&argc, argv);
 glutCreateWindow(“simple triangle”);
 glutDisplayFunc(display); // function to render window
 glutMainLoop();
} display function is being registered as a “callback”

Rendering - the display Callback
glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glBegin(GL_TRIANGLES); { // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
} glEnd();

Graphics
state
setting

Framebuffer
buffer
clearing

Triangle
rendering

Graphics State Setting

 Within the draw routine
glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES); { // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
} glEnd(); graphics context state is “stateful” (sticky) so technically

doesn’t need to be done every time display is called

State Updates
ShadeModel(SMOOTH)
requests smooth color
interpolation

changes fragment shading state
alternative is “flat shading”

  Enable(DEPTH_TEST) enables
depth buffer-based hidden
surface removal algorithm

  State updates happen in
command sequence order

  In fact, all OpenGL commands
are in a stream that must
complete in order

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

University of Texas at Austin CS354 - Computer Graphics Don Fussell

11
Clearing the buffers

 Within the draw routine
glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES); // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

Buffer Clearing
  New frame needs to reset
entire color buffer to
“background” or “clear”
color

Avoids having remnants of
prior frame persist

 Needed if can’t guarantee
every pixel is touched every
frame

  Depth buffer needs to be
cleared to “farthest value”

More about depth buffering
later

  Special operation in OpenGL
Hardware wants clears to run at
memory-saturating speeds
Still in-band with command
stream

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Clear Values and Operations

  OpenGL commands to set clear values
glClearColor for RGBA color buffers

 Example: glClearColor(0,0,0,1);
  Clear to black with 100% opacity
  Initial clear value is (0,0,0,0) so black with 0% opacity

glClearDepth for depth buffers
 Example: glClearDepth(1.0);

  Clear to farthest depth value, for [0,1] range
  Initial depth clear value is 1.0 so farthest depth value

Neither commands does the actual clear operation…
  That’s done by glClear(mask)

Mask parameter indicates buffers to clear
 GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT
 Bitwise-OR (|) them together
 Also GL_STENCIL_BUFFER_BIT, GL_ACCUM_BUFFER_BIT

Allows multiple buffers (e.g. depth & color) to be cleared in single
operation, possibly in parallel

Batching and Assembling Vertices

  glBegin and glEnd designate
a batch of primitives

Begin mode of
GL_TRIANGLES means every
3 vertexes = triangle

  Various vertex attributes
Position attribute sent with
glVertex* commands
Also colors, texture
coordinates, normals, etc.

  glVertex* assembles a vertex
and puts it into the primitive
batch

Other vertex attribute
commands such as glColor*
have their attributes “latched”
when glVertex* assembles a
vertex

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Assembling a Vertex

R G B A

S T R Q

glColor4f

glColor3f
glColor4ub, etc.

glTexCoord2f
glTexCoord3s

glTexCoord4i, etc.

Nx Ny Nz
glNormal3f
glNormal3s

glNormal3b, etc.

glVertex2s glVertex3f glVertex4d

X Y Z W

Nx Ny Nz

S T R Q
R G B A

X Y Z W assemble a vertex
with all its attributes

to
triangle

assembly

glVertex* command assembles a complete vertex

Vertex Attribute Commands

  OpenGL vertex attribute commands follow a regular pattern
gl-prefix :: common to all OpenGL API calls
  Vertex, Normal, TexCoord, Color, SecondaryColor, FogCoord, VertexAttrib,
etc.

 Name the semantic meaning of the attribute
VertexAttrib is for generic attributes

  Used by vertex shaders where the shader determines “meaning” of attributes
  Attribute zero & Vertex are “special”—they latch the assembly of a vertex

  1, 2, 3, 4 :: Number of components for the attribute
  For an attribute with more components than the number, sensible defaults apply

  For example, 3 for Color means Red, Green, Blue & Alpha assumed 1.0
  f, i, s, b, d, ub, us, ui

  Type of components: float, integer, short, byte, double, unsigned byte, unsigned
short, unsigned integer

  v :: means parameters are passed by a pointer
  Instead of immediate values

Example

 Consider glColor4ub and glVertex3fv

glColor4ub(red, green, blue, alpha);

glVertex3fv(const GLfloat v[3]);

Belongs to
OpenGL

Meaning
of attribute

Number of
components

Type of
components

Vector arguments

Assemble a Triangle

 Within the draw routine
glBegin(GL_TRIANGLES);

 glColor4ub(255, 0, 0, 255);
 glVertex3f(-0.8, 0.8, 0.3);

 glColor4ub(0, 255, 0, 255);
 glVertex3f(0.8, 0.8, -0.2);

 glColor4ub(0, 0, 255, 255);
 glVertex3f(0.0, -0.8, -0.2);

glEnd();

First
vertex

Second
vertex

Third
vertex

First
triangle

glBegin Primitive Batch Types

Assembly State Machines

 Fixed-function hardware performs primitive assembly
Based on glBegin’s mode

 State machine for GL_TRIANGLES

initial

no
vertex

one
vertex

two
vertexes

Begin(TRIANGLES)
Vertex Vertex Vertex /

Emit Triangle

End End End

GL_TRIANGLE_STRIP

initial

no
vertex

one
vertex

two
vertexes

Begin(TRIANGLE_
STRIP)

Vertex Vertex
Vertex /
Emit Triangle

End End End

two
vertexes

Vertex /
Emit Reverse

Triangle

End

CS 354

GL_POINTS and GL_LINES

initial

no
vertex

one
vertex

Begin(LINES)

Vertex /
Emit Line

End End

initial

no
vertex

Begin(POINTS)

Vertex /
Emit Point

End

Actual hardware state machine handles all OpenGL begin modes, so rather complex

CS 354

Triangle Assembly

  Now we have a triangle
assembled
Later, we’ll generalize how
the vertex positions get
transformed

And other attributes might be
processed too

  For now, just assume the
XYZ position passed to
glVertex3f position is in
NDC space

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Our Newly Assembled Triangle

 Think of drawing into a [-1,+1]3 cube
(-1.8, 0.8, 0.3) (-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

Clipping
  What if any portion of our triangle extended beyond the NDC
range of the [-1,+1]3 cube?

Only regions of the triangle [-1,+1]3 cube should be rasterized!

  No clipping for our simple triangle
This situation is known as “trivial accept”
Because all 3 vertices in the [-1,+1]3 cube

(-0.8, 0.8, 0.3) (-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

! !

!

Triangles are
convex, so entire
triangle must also
be in the cube if the
vertexes are

Triangle Clipping

 Triangles can straddle
the NDC cube

Happens with lines too
  In this case, we must
“clip” the triangle to the
NDC cube

This is an involved
process but one that must
be done

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Consider a Different Triangle
 Move left vertex so it’s X = -1.8

Result is a clipped triangle

(-1.8, 0.8, 0.3)

(-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)
"

!

!

Clipped Triangle Visualized

Clipped and Rasterized Normally Visualization of NDC space

Notice triangle is “poking out” of the cube;
this is the reason that should be clipped

Clipping Complications

  Given primitive may be clipped by multiple cube faces
Potentially clipping by all 6 faces!

  Approach
Four possibilities

  Face doesn’t actually result in any clipping of a triangle
  Triangle is unaffected by this plane then

 Clipping eliminates a triangle completely
  All 3 vertices on “wrong” side of the face’s plane

  Triangle “tip” clipped away
  Leaving two triangles

  Triangle “base” is clipped away
  Leaving a single triangle

Strategy: implement recursive clipping process
  “Two triangle” case means resulting two triangles must be clipped by
all remaining planes

Attribute Interpolation

 When splitting triangles for clipping, must also
interpolate new attributes

For example, color
Also texture coordinates

 Back to our example
 BLUE×0.8/1.8 + RED×1/1.8

 (0,0,1,1)×0.8/1.8 + (1,0,0,1)×1/1.8
 (0.444,0,.555,1) or MAGENTA

Weights:
 1/1.8
 0.8/1.8, sum to 1

What to do about this?

 Several possibilities
Require applications to never send primitives that
require clipping

 Wishful thinking
 And a cop-out—makes clipping their problem

Rasterize into larger space than normal and discard
pixels outsize the NDC cube

 Increases useless rasterizer work
 Requires additional math precision in the rasterizer

 Worse, creates problems when rendering into a projective clip
space (needed for perspective)

  Something for a future lecture
Break clipped triangles into smaller triangles that
tessellate the clipped region…

Triangle clipped by Two Planes

Recursive process can make 4 triangles
And it gets worse with more non-trivial clipping

NDC to Window Space

 NDC is “normalized” to
the [-1,+1]3 cube

Nice for clipping
But doesn’t yet map to
pixels on the screen

 Next: a transform from
NDC space to window
space

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Viewport and Depth Range

 OpenGL has 2 commands to configure the state to
map NDC space to window space

glViewport(GLint vx, GLint vy, GLsizei w, GLsizei h);
 Typically programmed to the window’s width and height for w
& h and zero for both vx & vy
 Example: glViewport(0, 0, window_width, window_height);

glDepthRange(GLclampd n, GLclampd f);
 n for near depth value, f for far depth value
 Normally set to glDepthRange(0,1)

 Which is an OpenGL context’s initial depth range state

 The mapping from NDC space to window space
depends on vx, vy, w, h, n, and d

OpenGL Data Type Naming

  The OpenGL specification allow an implementation to specify how
language data types map to OpenGL API data types

GLfloat is usually typedef’ed to float but this isn’t necessarily true
  Same for GLint, GLshort, GLdouble
  But is true in practice

GLbyte is byte-sized so expected it to be a char
GLubyte, GLushort, and GLuint are unsigned versions of GLbyte,
GLshort, and GLint

  Certain names clue you into their parameter usage
GLsizei is an integer parameter that is not allowed to be negative

  An GL_INVALID_VALUE is generated if a GLsizei parameter is ever
negative

GLclampd and GLclampf are the same as GLfloat and GLdouble, but
indicate the parameter will be clamped automatically to the [0,1] range

  Notice
glViewport uses GLsizei for width and height
glDepthRange uses GLclampd for near and far

OpenGL Errors

  OpenGL reports asynchronously from your commands
Effectively, you must explicitly call glGetError to find if any prior
command generated an error or was otherwise used incorrectly
glGetError returns GL_NO_ERROR if there is no error

  Otherwise an error such as GL_INVALID_VALUE is returned
  Rationale

OpenGL commands are meant to be executed in a pipeline so the error
might not be identified until after the command’s function has returned

  Errors might be detected by hardware that isn’t actually the CPU
Also forcing applications to check return codes of functions is slow

  It’s inappropriate for a high-performance API such as OpenGL
  So if you suspect errors, you have to poll for them

Learn to do this while you are debugging your code
If something fails to happen, suspect there’s an OpenGL errors

  Also commands that generated an error are ignored
The only exception is GL_OUT_OF_MEMORY which results in
undefined state

Mapping NDC to Window Space

 Assume (x,y,z) is the NDC coordinate that’s
passed to glVertex3f in our simple_triangle
example
 Then window-space (wx,wy,wz) location is

wx = (w/2)×x + vx + w/2

wy = (h/2)×y + vy + h/2

wz = [(f-n)/2]×z + (n+f)/2

× means scalar
multiplication here

Where is glViewport set?
  The simple_triangle program never calls glViewport

That’s OK because GLUT will call glViewport for you if you don’t
register your own per-window callback to handle when a window is
reshaped (resized)
Without a reshape callback registered, GLUT will simply call
glViewport(0, 0, window_width, window_height);

  Alternatively, you can use glReshapeFunc to register a
callback

Then calling glViewport or otherwise tracking the window height
becomes your application’s responsibility
Example reshape callback:
void reshape(int w, int h) {
 glViewport(0, 0, w, h);
}
Example registering a reshape callback:
glReshapeFunc(reshape);

  FYI: OpenGL maintains a lower-left window-space origin
Whereas most 2D graphics APIs use upper-left

What about glDepthRange?

 Simple applications don’t normally need to call
glDepthRange

Notice the simple_triangle program never calls
glDepthRange

 Rationale
The initial depth range of [0,1] is fine for most
application
It says the entire available depth buffer range should be
used

 When the depth range is [0,1] the equation for
window-space z simplifies to wz = ½×z + ½

Triangle Vertices in Window Space
 Assume the window is 500x500 pixels

So glViewport(0,0,500,500) has been called

(-0.8, 0.8, 0.3) (-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

Apply the Transforms

 First vertex :: (-0.8, 0.8, 0.3)
wx = (w/2)×x + vx + w/2 = 250×(-0.8) + 250 = 50
wy = (h/2)y + vy + h/2 = 250×(0.8) + 250 = 450
wz = [(f-n)/2]×z + (n+f)/2 = 0.65

 Second vertex :: (0.8, 0.8, -0.2)
wx = (w/2)×x + vx + w/2 = 250×(-0.8) + 250 = 50
wy = (h/2)y + vy + h/2 = 250×(0.8) + 250 = 450
wz = [(f-n)/2]×z + (n+f)/2 = 0.4

 Third vertex :: (0, -0.8, -0.2)
wx = (w/2)×x + vx + w/2 = 250×0 + 250 = 250
wy = (h/2)y + vy + h/2 = 250×(-0.8) + 250 = 50
wz = [(f-n)/2]×z + (n+f)/2 = 0.4

Rasterization

 Process of converting a
clipped triangle into a
set of sample locations
covered by the triangle

Also can rasterize points
and lines

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Determining a Triangle
  Classic view: 3 points
determine a triangle

Given 3 vertex positions, we
determine a triangle
Hence glVertex3f/
glVertex3f/glVertex3f

  Rasterization view: 3
oriented edge equations
determine a triangle

Each oriented edge equation in form:
A*x + B*y + C ≥ 078

Oriented Edge Equations

Step back: Why Triangles?
  Simplest linear primitive with area

If it got any simpler, the primitive would be a line (just 2
vertexes)
Guaranteed to be planar (flat) and convex (not concave)

  Triangles are compact
3 vertexes, 9 scalar values in affine 3D, determine a triangle
When in a mesh, vertex positions can be “shared” among
adjacent triangles

  Triangles are simple
Simplicity and generality of triangles facilitates elegant,
hardware-amenable algorithms

  Triangles lacks curvature
BUT with enough triangles, we can piecewise approximate
just about any manifold

  We can subdivide regions of high curvature until we
reach flat regions to represent as a triangle

Face meshed
with triangles

Concave vs. Convex

  Region is convex if any two points can be connected by a line
segment where all points on this segment are also in the region

Opposite is non-convex
  Concave means the region is connected but NOT convex

Connected means there’s some path (not necessarily a line) from
every two points in the region that is entirely in the region

7 Cases

+-+

++-

-++
+++

-+-

--+

+--

(x,y)

Ei(x,y) = Aix + Biy + Ci

Inside Triangle Test
  Evaluate edge equations at grid of sample points

If sample position is “inside” all 3 edge equations, the position is
“within” the triangle
Implicitly parallel—all samples can be tested at once

+ + +
-

-
-

•  Good for
hardware
implementation
•  Pixel-planes
•  Pineda tiled

extension

Other Rasterization Approaches

 Subdivision approaches
Easy to split a triangle into 4 triangles
Keep splitting triangles until they are slightly smaller
than your samples

 Often called micro-polygon rendering
 Chief advantage is being able to apply displacements during
the subdivision

 Edge walking approaches
Often used by CPU-based rasterizers
Much more sequential than Pineda approach
Work efficient and amendable to
fixed-point implementation

Micropolygons
Rasterization becomes a geometry dicing process

Approach taken by Pixar
  For production rendering when scene detail and quality is at a premium;
interactivity, not so much

High-level representation is generally patches rather than mere triangles

Displacement mapping of a meshed sphere [Pixar, RenderMan]

CS 354

Scanline Rasterization

 Find a “top” to the triangle
Now walk down edges

CS 354

Scanline Rasterization

 Move down a scan-line, keeping track of the left
and right ends of the triangle

CS 354

Scanline Rasterization

 Repeat, moving down a scanline
Cover the samples between the left and right
ends of the triangle in the scan-line

CS 354

Scanline Rasterization

 Process repeats for each scanline
Easy to “step” down to the next scanline based
on the slopes of two edges

CS 354

Scanline Rasterization

 Eventually reach a vertex
Transition to a different edge and continue filling
the span within the triangle

CS 354

Scanline Rasterization
 Until you finish the triangle

Friendly for how CPU memory arranges an image as a 2D
array with horizontal locality
Layout is good for raster scan-out too

Creating Edge Equations

 Triangle rasterization need edge equations
How do we make edge equations?

 An edge is a line so determined by two points
Each of the 3 triangle edges is determined by two of the
3 triangle vertexes (L, M, N)

L=(Lx,Ly)

N=(Nx,Ny)

M=(Mx,My)

How do we get

 A*x + B*y + C ≥ 0

for each edge
from L, M, and N?

Edge Equation Setup
  How do you get the coefficients A, B, and C?
  Determinants help—consider the LN edge:

  Expansion: (Ly-Ny)×Px + (Nx-Lx)×Py + Ny×Lx-Nx×Ly > 0

ALN = Ly-Ny
BLN = Nx-Lx
CLN = Ny×Lx-Nx×Ly

  Geometric interpretation: twice
signed area of the triangle LPN

0>
−−

−−

yyxx

yyxx

LPLP
LNLN

0>
−

−

LP
LN

or more
succinctly

L=(Lx,Ly)

N=(Nx,Ny)

P=(Px,Py)

P is an
arbitrary point

Triangle Vertices in Screen Space
 Assume the window is 500x500 pixels

So glViewport(0,0,500,500) has been called

(-0.8, 0.8, 0.3) (0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

Apply the Transform

 First vertex :: (-0.8, 0.8, 0.3)
wx = (w/2)×x + vx + w/2 = 250×(-0.8) + 250 = 50
wy = (h/2)y + vy + h/2 = 250×(0.8) + 250 = 450
wz = [(f-n)/2]×z + (n+f)/2 = 0.65

 Second vertex :: (0.8, 0.8, -0.2)
wx = (w/2)×x + vx + w/2 = 250×(0.8) + 250 = 450
wy = (h/2)y + vy + h/2 = 250×(0.8) + 250 = 450
wz = [(f-n)/2]×z + (n+f)/2 = 0.4

 Third vertex :: (0, -0.8, -0.2)
wx = (w/2)×x + vx + w/2 = 250×0 + 250 = 250
wy = (h/2)y + vy + h/2 = 250×(-0.8) + 250 = 50
wz = [(f-n)/2]×z + (n+f)/2 = 0.4

Screen Space Coordinates of Triangle
 Assume the window is 500x500 pixels

So glViewport(0,0,500,500) has been called

L=(50, 450, 0.65) N=(450,450,0.4)

M=(250,50,0.4)

center at (250,250)

origin at (0,0)

Look at the LN edge
 Expansion:
 (Ly-Ny)×Px + (Nx-Lx)×Py + Ny×Lx-Nx×Ly >
0

ALN = Ly-Ny = 450-450 = 0
BLN = Nx-Lx = 50-450 = -400
CLN = Ny×Lx-Nx×Ly = 180,000

 Is center at (250,250) in the triangle?
ALN × 250 + BLN × 250 + CLN = ???
0 × 250 – 400 × 250 + 180,000 = 80,000
 80,000 > 0 so (250,250) is in the triangle

All Three Edge Equations
 All three triangle edge equations:

 Satisfy all 3 and P is in the triangle
And then rasterize at sample location P

 Caveat: if reverse the

0>
−

−

LP
LN

0>
−

−

LM
LP

0>
−

−

PM
PN

0<
−

−

LM
LN

comparsion sense

Water Tight Rasterization
  Two triangles often share a common edge

Indeed in closed polygonal meshes, every triangle shares its edges
with as many as three other triangles

 Called adjacent or “shared edge” triangles
  Crucial rasterization property

No double sampling (hitting) along the shared edge
No sample gaps (pixel fall-out) along the shared edge
Samples along the shared edge must be belong to exactly one of
the two triangles

 Not both, not neight
  Water tight rasterization is crucial to many higher-level
algorithms; otherwise, rendering artifacts

Possible artifact: if pixels hit twice on an
edge, the pixel could be double blended
Example application: Stenciled
Shadow Volumes (SSV)

Water Tight Rasterization Solution

 First “snap” vertex positions to a grid
Grid can (and should) be sub-pixel samples
Results in fixed-point vertex positions

 Fixed-point math allows exact edge computations
Surprising? Ensuring robustness requires discarding
excess precision

 Problem
What happens when edge equation evaluates to exactly
zero at a sample position?
Need a consistent tight breaker

Tie Breaker Rule

 Look at edge equation coefficients
 Tie-breaker rule when edge equation
evaluates to zero
“Inside” edge when edge equation is zero and
A > 0 when A ≠ 0, or B > 0 when A = 0

 Complete coverage determination rule
if (E(x,y) > 0 || (E(x,y)==0 && (A != 0 ? A > 0 : B >
0)))
 sample at (x,y) is inside edge

Zero Area Triangles

 We reverse the edge equation comparison sense if
the (signed) area of the triangle is negative
 What if the area is zero?

Linear algebra indicates a singular matrix
Need to cull the primitive

 Also useful to cull primitives when area is
negative

OpenGL calls this face culling
 Enabled with glEnable(GL_CULL_FACE)

When drawing closed meshes, back face culling can
avoid drawing primitives assured to be occluded by
front faces

Back Face Culling Example

Torus drawn in wire-frame
without back face culling

Notice considerable extraneous
triangles that would normally
be occluded

Torus drawn in wire-frame
with back face culling

By culling back-facing (negative
signed area) triangles, fewer
triangles are rasterized

Simple Fragment Shading
  For all samples (pixels)
within the triangle, evaluate
the interpolated color

Requires having math to
determine color at the sample
(x,y) location

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Color Interpolation
  Our simple triangle is drawn with smooth color
interpolation

Recall: glShadeModel(GL_SMOOTH)

  How is color interpolated?
Think of a plane equation to computer each color component
(say red) as a function of (x,y)

  Just done for samples positions within the triangle

redredred CyBxAredness ++=""

Setup Plane Equation
 Setup plane equation to solve for “red” as a
function of (x,y)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

red

red

red

yx

yx

yx

red

red

red

C
B
A

NN
MM
LL

N
M
L

1
1
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

red

red

red

red

red

red

yx

yx

yx

C
B
A

N
M
L

NN
MM
LL 1

1
1
1

Setup system of
equations

Solve for plane
equation coefficients
A, B, C

Do the same for green, blue, and alpha (opacity)…

More Intuitive Way to Interpolate
Barycentric coordinates

L M

N

P

Area(PMN)
Area(LMN)

 = α

Area(LPN)
Area(LMN)

 = β

Area(LMP)
Area(LMN)

 = γ

 Note: α + β + γ = 0
by construction

attribute(P) = α×attribute(L) + β×attribute(M) + γ×attribute(N)

Hardware Triangle Rendering Rates

 Top GPUs can setup over a billion triangles
per second for rasterization
 Triangle setup & rasterization is just one of
the (many, many) computation steps in
GPU rendering

Remaining Steps

 Depth interpolation
 Color update
 Scan-out to the display

 Next time…

Programming tips
 3D graphics, whether OpenGL or Direct3D
or any other API, can be frustrating

You write a bunch of code and the result is

Nothing but black window; where did your
rendering go??

Things to Try
  Set your clear color to something other than black!

It is easy to draw things black accidentally so don’t make black the clear color
But black is the initial clear color

  Did you draw something for one frame, but the next frame draws nothing?
Are you using depth buffering? Did you forget to clear the depth buffer?

  Remember there are near and far clip planes so clipping in Z, not just X & Y
  Have you checked for glGetError?

Call glGetError once per frame while debugging so you can see errors that occur
For release code, take out the glGetError calls

  Not sure what state you are in?
Use glGetIntegerv or glGetFloatv or other query functions to make sure that
OpenGL’s state is what you think it is

  Use glutSwapBuffers to flush your rendering and show to the visible window
Likewise glFinish makes sure all pending commands have finished

  Try reading
http://www.slideshare.net/Mark_Kilgard/avoiding-19-common-opengl-pitfalls
This is well worth the time wasted debugging a problem that could be avoided

Next Lecture
  Finish OpenGL pipeline
  Transforms and Graphics Math

Interpolation, vector math, and number representations for
computer graphics

Thanks

 Presentation approach and figures from
David Luebke [2003]
Brandon Lloyd [2007]
Geometric Algebra for Computer Science
[Dorst, Fontijne, Mann]
via Mark Kilgard

