
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Intro to OpenGL III

Don Fussell
Computer Science Department

The University of Texas at Austin

Where are we?

 Continuing the OpenGL basic pipeline

OpenGL API Example

glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES); // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

GLUT API Example

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
 // << insert code on prior slide here >>
 glutSwapBuffers();
}
void main(int argc, char **argv) {
 // request double-buffered color window with depth buffer
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
 glutInit(&argc, argv);
 glutCreateWindow(“simple triangle”);
 glutDisplayFunc(display); // function to render window
 glutMainLoop();
}

NDC to Window Space

 NDC is “normalized” to
the [-1,+1]3 cube

Nice for clipping
But doesn’t yet map to
pixels on the screen

 Next: a transform from
NDC space to window
space

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Viewport and Depth Range

 OpenGL has 2 commands to configure the state to
map NDC space to window space

glViewport(GLint vx, GLint vy, GLsizei w, GLsizei h);
 Typically programmed to the window’s width and height for w
& h and zero for both vx & vy
 Example: glViewport(0, 0, window_width, window_height);

glDepthRange(GLclampd n, GLclampd f);
 n for near depth value, f for far depth value
 Normally set to glDepthRange(0,1)

 Which is an OpenGL context’s initial depth range state

 The mapping from NDC space to window space
depends on vx, vy, w, h, n, and f

Viewport Transform

University of Texas at Austin CS354 - Computer Graphics Don Fussell

NDC

Screen

Window

Viewport

(-1,-1)

(-1,1) (1,1)

(1,-1)

(vx,vy)

w

h

Viewport Transform

University of Texas at Austin CS354 - Computer Graphics Don Fussell

NDC

(-1,-1)

(-1,1) (1,1)

(1,-1)

(vx,vy)

w/2 w/2*x vx x

wx = w/2*x + w/2 + vx
wy = h/2*y + h/2 + vy

Mapping NDC to Window Space

 Assume (x,y,z) is the NDC coordinate that’s
passed to glVertex3f in our simple_triangle
example
 Location in viewport (window space) is

wx = (w/2)*x + vx + w/2

wy = (h/2)*y + vy + h/2

Transforming Vertices
 Assume glViewport(0,0,500,500) has been called

(-0.8, 0.8, 0.3) (0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

Apply the Transforms

 First vertex :: (-0.8, 0.8, 0.3)
wx = (w/2)*x + vx + w/2 = 250*(-0.8) + 250 = 50
wy = (h/2)*y + vy + h/2 = 250*(0.8) + 250 = 450

 Second vertex :: (0.8, 0.8, -0.2)
wx = (w/2)*x + vx + w/2 = 250*(-0.8) + 250 = 50
wy = (h/2)*y + vy + h/2 = 250*(0.8) + 250 = 450

 Third vertex :: (0, -0.8, -0.2)
wx = (w/2)*x + vx + w/2 = 250*0 + 250 = 250
wy = (h/2)*y + vy + h/2 = 250*(-0.8) + 250 = 50

Window Space Coordinates
  Assume glViewport(0,0,500,500) has been called

L=(50, 450, 0.65) N=(450,450,0.4)

M=(250,50,0.4)

center at (250,250)

origin at (0,0)

Where is glViewport set?
  The simple_triangle program never calls glViewport

That’s OK because GLUT will call glViewport for you if you don’t
register your own per-window callback to handle when a window is
reshaped (resized)
Without a reshape callback registered, GLUT will simply call
glViewport(0, 0, window_width, window_height);

  Alternatively, you can use glReshapeFunc to register a
callback

Then calling glViewport or otherwise tracking the window height
becomes your application’s responsibility
Example reshape callback:
void reshape(int w, int h) {
 glViewport(0, 0, w, h);
}
Example registering a reshape callback:
glReshapeFunc(reshape);

  FYI: OpenGL maintains a lower-left window-space origin
Whereas most 2D graphics APIs use upper-left

What about glDepthRange?

 Simple applications don’t normally need to call
glDepthRange

Notice the simple_triangle program never calls
glDepthRange

 Rationale
The initial depth range of [0,1] is fine for most
application
It says the entire available depth buffer range should be
used

 When the depth range is [0,1] the equation for
window-space z simplifies to wz = ½×z + ½

Rasterization

 Process of converting a
clipped triangle into a
set of sample locations
covered by the triangle

Also can rasterize points
and lines

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Concave vs. Convex

  Region is convex if any two points can be connected by a line
segment where all points on this segment are also in the region

Opposite is non-convex
  Concave means the region is connected but NOT convex

Connected means there’s some path (not necessarily a line) from
every two points in the region that is entirely in the region

Each oriented edge equation in form:
A*x + B*y + C ≥ 0

Determining a Triangle
  Classic view: 3 points
determine a triangle

Given 3 vertex positions, we
determine a triangle
Hence glVertex3f/
glVertex3f/glVertex3f

  Rasterization view: 3
oriented edge equations
determine a triangle

Oriented Edge Equations

7 Cases

+-+

++-

-++
+++

-+-

--+

+--

(x,y)

Ei(x,y) = Aix + Biy + Ci

Inside Triangle Test
  Evaluate edge equations at grid of sample points

If sample position is “inside” all 3 edge equations, the position is
“within” the triangle
Implicitly parallel—all samples can be tested at once

+ + +
-

-
-

•  Good for
hardware
implementation
•  Pixel-planes
•  Pineda tiled

extension

Creating Edge Equations

 Triangle rasterization need edge equations
How do we make edge equations?

 An edge is a line so determined by two points
Each of the 3 triangle edges is determined by two of the
3 triangle vertexes (L, M, N)

L=(Lx,Ly)

N=(Nx,Ny)

M=(Mx,My)

How do we get

 A*x + B*y + C ≥ 0

for each edge
from L, M, and N?

Edge Equation Setup
  How do you get the coefficients A, B, and C?
  Determinants help—consider the LN edge:

  Expansion: (Ly-Ny)×Px + (Nx-Lx)×Py + Ny×Lx-Nx×Ly > 0

ALN = Ly-Ny
BLN = Nx-Lx
CLN = Ny×Lx-Nx×Ly

  Geometric interpretation: twice
signed area of the triangle LPN

0>
−−

−−

yyxx

yyxx

LPLP
LNLN

0>
−

−

LP
LN

or more
succinctly

L=(Lx,Ly)

N=(Nx,Ny)

P=(Px,Py)

P is an
arbitrary point

Look at the LN edge
 Expansion:
 (Ly-Ny)×Px + (Nx-Lx)×Py + Ny×Lx-Nx×Ly >
0

ALN = Ly-Ny = 450-450 = 0
BLN = Nx-Lx = 50-450 = -400
CLN = Ny×Lx-Nx×Ly = 180,000

 Is center at (250,250) in the triangle?
ALN × 250 + BLN × 250 + CLN = ???
0 × 250 – 400 × 250 + 180,000 = 80,000
 80,000 > 0 so (250,250) is in the triangle

All Three Edge Equations
 All three triangle edge equations:

 Satisfy all 3 and P is in the triangle
And then rasterize at sample location P

 Caveat: if reverse the

0>
−

−

LP
LN

0>
−

−

LM
LP

0>
−

−

PM
PN

0<
−

−

LM
LN

comparsion sense

Other Rasterization Approaches

 Subdivision approaches
Easy to split a triangle into 4 triangles
Keep splitting triangles until they are slightly smaller
than your samples

 Often called micro-polygon rendering
 Chief advantage is being able to apply displacements during
the subdivision

 Edge walking approaches
Often used by CPU-based rasterizers
Much more sequential than Pineda approach
Work efficient and amendable to
fixed-point implementation

Micropolygons
Rasterization becomes a geometry dicing process

Approach taken by Pixar
  For production rendering when scene detail and quality is at a premium;
interactivity, not so much

High-level representation is generally patches rather than mere triangles

Displacement mapping of a meshed sphere [Pixar, RenderMan]

Simple Fragment Shading
  For all samples (pixels)
within the triangle, evaluate
the interpolated color

Requires having math to
determine color at the sample
(x,y) location

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Color Interpolation
  Our simple triangle is drawn with smooth color
interpolation

Recall: glShadeModel(GL_SMOOTH)

  How is color interpolated?
Think of a plane equation to computer each color component
(say red) as a function of (x,y)

  Just done for samples positions within the triangle

redredred CyBxAredness ++=""

Setup Plane Equation
 Setup plane equation to solve for “red” as a
function of (x,y)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

red

red

red

yx

yx

yx

red

red

red

C
B
A

NN
MM
LL

N
M
L

1
1
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

red

red

red

red

red

red

yx

yx

yx

C
B
A

N
M
L

NN
MM
LL 1

1
1
1

Setup system of
equations

Solve for plane
equation coefficients
A, B, C

Do the same for green, blue, and alpha (opacity)…

More Intuitive Way to Interpolate
Barycentric coordinates

L M

N

P

Area(PMN)
Area(LMN)

 = α

Area(LPN)
Area(LMN)

 = β

Area(LMP)
Area(LMN)

 = γ

 Note: α + β + γ = 0
by construction

attribute(P) = α×attribute(L) + β×attribute(M) + γ×attribute(N)

Hardware Triangle Rendering Rates

 Top GPUs can setup over a billion triangles
per second for rasterization
 Triangle setup & rasterization is just one of
the (many, many) computation steps in
GPU rendering

A Simplified Graphics Pipeline

Ensure closer
objects obscure
(hide) more
distant objects

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Interpolating Window Space Z

 Plane equation coefficients (A, B, C)
generated by multiplying inverse matrix by
vector of per-vertex attributes

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

z

z

z

z

z

yx

yx

yx

C
B
A

N
M
L

NN
MM
LL 1

1
1
1

CS 354

Simple Triangle Vertex Depth

  Assume glViewport(0,0,500,500) has been called
And glDepthRange(0,1)

L=(50, 450, 0.65) N=(450,450,0.4)

M=(250,50,0.4)

Lz = 0.65
Mz = 0.40
Nz = 0.40

CS 354

Interpolating Window Space Z

 Substitute per-vertex (x,y) and Z values for
the L, M, and N vertexes

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

z

z

C
B
A

4.0
4.0
65.01

1450450
150250
145050

Z(x,y) = -0.000625*x + 0.0003125*y + 0.540625

Az= -0.000625

Bz = 0.0003125

Cz = 0.540625

Complete Z plane equation

Depth Buffer Visualized

Z or depth values
white = 1.0 (far), black = 0.0 (near)

Depth-tested
3D scene

Depth Buffer Algorithm
  Simple, brute force

Every color sample in framebuffer has corresponding depth sample
Discrete, solves occlusion in pixel space
Memory intensive, but fast for hardware

  Basic algorithm
Clear the depth buffer to its “maximum far” value (generally 1.0)
Interpolate fragment’s Z
Read fragment’s corresponding depth buffer sample Z value
If interpolated Z is less than (closer) than Z from depth buffer

 Then replace the depth buffer Z with the fragment’s Z
 And also allow the fragment’s shaded color to update the
corresponding color value in color buffer

 Otherwise discard fragment
 Do not update depth or color buffer

Depth Buffer Example
  Fragment gets rasterized
  Fragment’s Z value is
interpolated

Resulting Z value is 0.65
  Read the corresponding
pixel’s Z value

Reads the value 0.8
  Evaluate depth function

0.65 GL_LESS 0.8 is true
So 0.65 replaces 0.8 in the
depth buffer

  Second primitive
rasterizes same pixel
  Fragment’s Z value is
interpolated

Resulting Z value is 0.72
  Read the corresponding
pixel’s Z value

Reads the value 0.65
  Evaluate depth function

0.72 GL_LESS 0.65 is false
So the fragment’s depth
value and color value are
discarded

Depth Test Operation

0.8

0.65

time

pixel
depth

fragment
depth

0.65<0.8
is true

0.65

0.72

0.65<0.8
is false

0.65
depth test
passes

depth test
fails

OpenGL API for Depth Testing
  Simple to use

Most applications just “enable” depth testing and hidden surfaces are removed
Enable it: glEnable(GL_DEPTH_TEST)

  Disabled by default
Must have depth buffer allocated for it to work

  Example: glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH)

  More control
Clearing the depth buffer

glClear(GL_DEPTH_BUFFER_BIT | otherBits)
glClearDepth(zvalue)

  Initial value is 1.0, the maximum Z value in the depth buffer
glDepthFunc(zfunc)

zfunc is one of GL_LESS, GL_GREATER, GL_EQUAL, GL_GEQUAL, GL_LEQUAL,
GL_ALWAYS, GL_NEVER, GL_NOTEQUAL
  Initial value is GL_LESS

glDepthMask(boolean)
  True means write depth value if depth test passes; if false, don’t write
  Initial value is GL_TRUE

glDepthRange
  Maps NDC Z values to window-space Z values
  Initially [0,1], mapping to the entire available depth range

Not Just for View Occlusion
Depth Buffers also Useful for Shadow Generation

Without Shadows With Shadows Projected Shadow Map

Light’s View Light’s View Depth

A Simplified Graphics Pipeline

Write shaded
color to color buffer

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Next Lecture
  Graphics Math, Transforms

Interpolation, vector math, and number representations for
computer graphics

Next Lecture
  Finish OpenGL pipeline
  Transforms and Graphics Math

Interpolation, vector math, and number representations for
computer graphics

Programming tips
 3D graphics, whether OpenGL or Direct3D
or any other API, can be frustrating

You write a bunch of code and the result is

Nothing but black window; where did your
rendering go??

Things to Try
  Set your clear color to something other than black!

It is easy to draw things black accidentally so don’t make black the clear color
But black is the initial clear color

  Did you draw something for one frame, but the next frame draws nothing?
Are you using depth buffering? Did you forget to clear the depth buffer?

  Remember there are near and far clip planes so clipping in Z, not just X & Y
  Have you checked for glGetError?

Call glGetError once per frame while debugging so you can see errors that occur
For release code, take out the glGetError calls

  Not sure what state you are in?
Use glGetIntegerv or glGetFloatv or other query functions to make sure that
OpenGL’s state is what you think it is

  Use glutSwapBuffers to flush your rendering and show to the visible window
Likewise glFinish makes sure all pending commands have finished

  Try reading
http://www.slideshare.net/Mark_Kilgard/avoiding-19-common-opengl-pitfalls
This is well worth the time wasted debugging a problem that could be avoided

Thanks

 Presentation approach and figures from
David Luebke [2003]
Brandon Lloyd [2007]
Geometric Algebra for Computer Science
[Dorst, Fontijne, Mann]
via Mark Kilgard

