Intro to OpenGL 111

Don Fussell
Computer Science Department

The Unmiversity of Texas at Austin

o gmmEmESSSSE

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Where are we?

m Continuing the OpenGL basic pipeline

OpenGL API Example

glShadeModel(GL _SMOOTH); // smooth color interpolation
glEnable(GL DEPTH TEST); // enable hidden surface removal

glClear(GL _COLOR_BUFFER BIT|GL DEPTH BUFFER BIT);

glBegin(GL TRIANGLES); // every 3 vertexes makes a triangle
glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
glVertex31(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
olVertex3£(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

glColordub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
// <<insert code on prior slide here >>
glutSwapBuffers();

b

void main(int argc, char **argv) {
// request double-buffered color window with depth buffer
glutlnitDisplayMode(GLUT RGBA | GLUT DOUBLE | GLUT DEPTH);
glutlnit(&argc, argv);
glutCreateWindow(“simple triangle”);
glutDisplayFunc(display); // function to render window
glutMainLoop();

NDC to Window Space

| Application |
m NDC is “normalized” to :

the [-1,+1]3 cube

| Vertex batching & assembly |

m Nice for clipping | Clipping |

Depth buffer

= But doesn’ t yet map to l
pixels on the screen [NDC to Wiildow space |
m Next: a transform from [Rasteri 00 |
NDC space to window |
space |Fragment shading |
v
| Depth testing |<—>
v

| Color update I—>

Framebuffer

Viewport and Depth Range

® OpenGL has 2 commands to configure the state to
map NDC space to window space
m glViewport(GLint vx, GLint vy, GLsize1 w, GLsizei h);

m Typically programmed to the window' s width and height for w
& h and zero for both vx & vy

m Example: glViewport(0, 0, window width, window height);
m g]DepthRange(GLclampd n, GLclampd f1);

m 1 for near depth value, f for far depth value
m Normally set to glDepthRange(0,1)
m Which is an OpenGL context’ s initial depth range state
® The mapping from NDC space to window space

depends on vx, vy, w, h, n, and f

Viewport Transform

~

(1,1) / Screen
A ‘ y
J
\

| yindon
Window
(-1,-1) (1,-1) \[| /

D
NDE (Vsvy) Viewport

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Viewport Transform

]
NDC
(_191) (191)

—

(VoVy)

(-1-1) (1-1) 1 W2 oron

X X

w, = W/2*x +w/2 +v,
w, =h/2*%y + W2 + v,

University of Texas at Austin CS354 - Computer Graphics Don Fussell

W/ Mapping NDC to Window Space

m Assume (x,y,z) is the NDC coordinate that's
passed to glVertex3f in our simple triangle
example

m Location 1n viewport (window space) 1s
mw, = (W/2)*x+v, +w/2
mw, = (h/2)*y + v, + h/2

W/ Transforming Vertices

®m Assume glViewport(0,0,500,500) has been called

(-0.8, 0.8, 0.3) (0.8, 0.8,-0.2)

origin at (0,0,0)

(0, -0.8, -0.2)

Apply the Transforms

m First vertex :: (-0.8, 0.8, 0.3)
mw, = (W/2)*x+v +w/2=250%-0.8) + 250 =50
= w, = (W2)*y + v, + h/2 = 250%(0.8) + 250 = 450
m Second vertex :: (0.8, 0.8, -0.2)
mw, = (W/2)*x +v, +w/2=250%(-0.8) + 250 =50
mw, = (h/2)*y + v, +h/2 = 250%(0.8) + 250 = 450
® Third vertex :: (0, -0.8, -0.2)
mw, = (W/2)*x+ v, +w/2=250%0+ 250 =250
mw, = (h/2)*y + v, +h/2 = 250*(-0.8) + 250 = 50

N=(450,450,0.4)

center at (250,250)

origin at (0,0)

M=(250,50,0.4)

Where 1s glViewport set?

m The simple_triangle program never calls glViewport

m That's OK because GLUT will call glViewport for you if you don't
register your own per-window callback to handle when a window 1is
reshaped (resized)

m Without a reshape callback registered, GLUT will simply call
glViewport(0, 0, window width, window_height);

m Alternatively, you can use glReshapeFunc to register a
callback

® Then calling glViewport or otherwise tracking the window height
becomes your application’ s responsibility

m Example reshape callback:
void reshape(int w, int h) {
glViewport(0, 0, w, h);
h

m Example registering a reshape callback:
glReshapeFunc(reshape);

® FYI: OpenGL maintains a lower-left window-space origin
m Whereas most 2D graphics APIs use upper-left

What about glDepthRange?

m Simple applications don't normally need to call
glDepthRange

m Notice the simple triangle program never calls
glDepthRange
m Rationale

® The 1nitial depth range of [0,1] is fine for most
application

m [t says the entire available depth buffer range should be
used
® When the depth range 1s [0,1] the equation for
window-space z simplifies to wz = Vaxz + 5

Rasterization

| Application |
® Process of converting a !
: : A | Vertex batching & assembly |
clipped triangle into a
set of sample locations [Clipping |
covered by the triangle !
m Also can rasterize points [NDC to Wlildow space |
and lines r—
| Rasterization |
:
|Fragment shading |
v
| Depth testing |<—>

Depth buffer

- !
- | Color update I—>

Framebuffer

Concave vs. Convex

Cconvex

g Non-convex

m Region 1s convex 1f any two points can be connected by a line
segment where all points on this segment are also 1n the region

m Opposite 1S non-convex
m Concave means the region is connected but NOT convex

= Connected means there’ s some path (not necessarily a line) from
every two points in the region that is entirely in the region

Determining a Triangle

m Classic view: 3 points m Rasterization view: 3
determine a triangle oriented edge equations
m Given 3 vertex positions, we determine a triangle

determine a triangle

m Hence glVertex3t/
glVertex3t/glVertex3f

Each oriented edge equation in form:
A*x +B*y+C>0

Ax+By+C < 0

Inside Triangle Test

m Evaluate edge equations at grid of sample points
m If sample position is “inside” all 3 edge equations, the position is

implementation
* Pixel-planes

“within” the triangle

m [mplicitly parallel—all samples can be tested at once

e Good for
hardware

Pineda tiled
extension

. 44444444
~9000 09, boooooo ooo,o,op,o,opp
""'J""“"Q»......Q,
Q”""""""'Q’ .. ‘.
Q."“""""‘ X" Q..
¢¢¢¢¢
..

...0..................................
00000000000000000000000000000000000000

Creating Edge Equations

® Triangle rasterization need edge equations
m How do we make edge equations?

® An edge 1s a line so determined by two points

m Each of the 3 triangle edges 1s determined by two of the
3 triangle vertexes (L, M, N)

N=(Nx,Ny) How do we get
A*x +B*y +C>0
M=(Mx, M
C Y for each edge

from L, M, and N?

Edge Equation Setup

®m How do you get the coefficients A, B, and C?
m Determinants help—consider the LN edge:

N,-L N, -L,
B-L, F-L

m Expansion: (Ly-Ny)xPx + (Nx-Lx)xPy + NyxLx-NxxLy > 0

= Ay = Ly-Ny
m B = Nx-Lx
m C, = NyxLx-NxxLy

> ()

or more
succinctly

®m Geometric interpretation: twice
signed area of the triangle LPN

N-L
P-L

P is an
arbitrary point

> ()

. N=(Nx,Ny)

P=(Px,Py,

L=(Lx,Ly)

/ {5\ Q}f‘““% “/”»A\
[lf | B2 | W
W Look at the cdge
O/

= Expansion:
(Ly-Ny)xPx + (Nx-Lx)xPy + NyxLx-NxxLy >
0
mA, = Ly-Ny=450-450=0
BB, = Nx-Lx =50-450 = -400
mC, = NyxLx-NxxLy = 180,000
m [s center at (250,250) 1n the triangle?
mA X250+ B x 250+ C =277
m(0 x250—-400 % 250 + 180,000 = 80,000
80,000 > 0 so (250,250) 1s 1n the triangle

1w, All Three Edge Equations

m All three triangle edge equations:

N-P
M -P

> ()

N -L
P-L

> ()

P-L
M - L

m Satisty all 3 and P 1s in the triangle

® And then rasterize at sample location P

m Caveat: 1if

N-L
M - L

<0

reverse the

> ()

comparsion sense

Other Rasterization Approaches

® Subdivision approaches %
m Easy to split a triangle 1nto 4 triangles

m Keep splitting triangles until they are slightly smaller
than your samples
m Often called micro-polygon rendering

m Chief advantage is being able to apply displacements during
the subdivision

m Edge walking approaches

m Often used by CPU-based rasterizers 17%
® Much more sequential than Pineda approach ya———

m Work efficient and amendable to
fixed-point implementation

Micropolygons

m Rasterization becomes a geometry dicing process
m Approach taken by Pixar

m For production rendering when scene detail and quality is at a premium;
interactivity, not so much

m High-level representation is generally patches rather than mere triangles

Displacement mapping of a meshed sphere [Pixar, RenderMan]

Sitmple Fragment Shading

m For all samples (pixels) | Application |
within the triangle, evaluate l
the interpolated color | Vertex batching & assembly |

m Requires having math to I—Ll
determine color at the sample Clipping

(x,y) location y
| NDC to window space |

4

| Rasterization |

!

| Fragment shading |

v

| Depth testing |<—> Depth buffer

v

|C010r update |—> Framebuffer

2, Color Interpolation

® Our simple triangle 1s drawn with smooth color
interpolation

m Recall: glShadeModel(GL SMOOTH)

m How i1s color interpolated?

m Think of a plane equation to computer each color component
(say red) as a function of (x,y)

m Just done for samples positions within the triangle

" "n__
redness"=A _x+B _,yv+C,

r r

Setup Plane Equation

= Setup plane equation to solve for “red” as a

function of (x,y)

Setup system of
equations

Solve for plane

equation coefficients
A,B,C

1
[~
N
3.
]

.2 \E
[

L

Mx
N

X

s

M
N

L

y

2/

y

L red
M red

Ared

B red

_Nred

1L Cred

Do the same for green, blue, and alpha (opacity)...

red

red

red

More Intuitive Way to Interpolate

m Barycentric coordinates

N
Area(PMN) ,

Area(LMN)

Area(LPNY) B
Area(LMN)

Area(LMBR) y
Area(LMN)

Note: a+B+vy=0
I M by construction

attribute(P) = axattribute(L) + Pxattribute(M) + yXattribute(N)

W/ Hardware Triangle Rendering Rates

® Top GPUs can setup over a billion triangles
per second for rasterization

® Triangle setup & rasterization 1s just one of
the (many, many) computation steps in
GPU rendering

WJA Simplified Graphics Pipeline

| Application |

!

| Vertex batching & assembly |

| Clipping |
!

| NDC to window space |
v

En.sure closer | Rasterization |
objects obscure |

(hide) more :
distant objects |Fragment shading |

. v
4' Depth testing |<—> Depth buffer

v
|Color update |—> Framebuffer

Interpolating Window Space Z

® Plane equation coefficients (A, B, C)
generated by multiplying inverse matrix by
vector of per-vertex attributes

= & 7L 1[4
M, M, 1| |[M_ |=|B,
N, N, 1| |N. | |C,

Sitmple Triangle Vertex Depth

® Assume glViewport(0,0,500,500) has been called
® And glDepthRange(0,1)

L=(50, 450, 0.65) N=(450,450,0.4)

L =0.65
M, = 0.40
N, = 0.40

M=(250,50,0.4)

W, Interpolating Window Space Z

m Substitute per-vertex (Xx,y) and Z values for
the L, M, and N vertexes

50 450 117 110.65°
50 50 1| |04
450 450 1| |04

A =-0.000625

AZ
BZ B, =0.0003125
CZ

C, = 0.540625

Complete Z plane equation

Z(x,y) = -0.000625%x + 6:6003125*y + 0.540625

Depth-tested Z or depth values
3D scene white = 1.0 (far), black = 0.0 (near)

Depth Buffer Algorithm

m Simple, brute force
m Every color sample in framebuffer has corresponding depth sample
m Discrete, solves occlusion in pixel space
® Memory intensive, but fast for hardware

m Basic algorithm
m Clear the depth buffer to its “maximum far” value (generally 1.0)
® Interpolate fragment’ s Z
m Read fragment’ s corresponding depth buffer sample Z value
m [f interpolated Z is less than (closer) than Z from depth buffer

m Then replace the depth buffer Z with the fragment’ s Z

m And also allow the fragment’ s shaded color to update the
corresponding color value in color buffer

m Otherwise discard fragment
m Do not update depth or color buffer

Depth Buffer Example

m Fragment gets rasterized

® Fragment's Z value is
interpolated

m Resulting Z value 1s 0.65

m Read the corresponding
pixel's Z value
m Reads the value 0.8

m Evaluate depth function
m 0.65 GL_LESS 0.8 1s true

m So 0.65 replaces 0.8 in the
depth buffer

m Second primitive
rasterizes same pixel

® Fragment's Z value is
interpolated

m Resulting Z value 1s 0.72

m Read the corresponding
pixel’'s Z value

m Reads the value 0.65

m Evaluate depth function
= 0.72 GL LESS 0.65 is false

m So the fragment s depth

value and color value are
discarded

Depth Test Operation

fragment |O_I_I%
depth
‘0.65<O.1 ‘0.65<O.1%mest
p ixel depth test
depth 0.65

OpenGL API for Depth Testing

®m Simple to use

m Most applications just “enable” depth testing and hidden surfaces are removed
m Enable it: glEnable(GL DEPTH TEST)
m Disabled by default
m Must have depth buffer allocated for it to work
= Example: glutlnitDisplayMode(GLUT RGBA | GLUT DOUBLE | GLUT DEPTH)
®m More control

m Clearing the depth buffer
m glClear(GL DEPTH BUFFER BIT | otherBits)
m glClearDepth(zvalue)
® Initial value is 1.0, the maximum Z value in the depth buffer
m glDepthFunc(zfunc)

m zfunc is one of GL_LESS, GL_ GREATER, GL_EQUAL, GL GEQUAL, GL LEQUAL,
GL ALWAYS, GL NEVER, GL NOTEQUAL

m Initial value is GL LESS
m glDepthMask(boolean)
m True means write depth value if depth test passes; if false, don’t write
m Initial value is GL. TRUE
m glDepthRange
m Maps NDC Z values to window-space Z values
m Initially [0,1], mapping to the entire available depth range

Not Just for View Occlusion
Depth Buffers also Useful for Shadow Generation

Without Shadows Projected Shadow Map With Shadows

7

Light' s View Light’ s View Depth

WJA Simplified Graphics Pipeline

| Application |

!

| Vertex batching & assembly |

| Clipping |
!

| NDC to window space |
v

Write shaded | Rasterization |
color to color buffer ;

| Fragment shading |

v

| Depth testing |<—> Depth buffer

v
Color update |—> Framebuffer

Next Lecture

m Graphics Math, Transforms

m [nterpolation, vector math, and number representations for
computer graphics

Next Lecture

® Finish OpenGL pipeline
® Transforms and Graphics Math

m [nterpolation, vector math, and number representations for
computer graphics

NS A~ \¢ :\

W7 Programming tips

m 3D graphics, whether OpenGL or Direct3D
or any other API, can be frustrating

® You write a bunch of code and the result 1s

Nothing but black window, where did your
rendering go??

Things to Try

Set your clear color to something other than black!
m [t is easy to draw things black accidentally so don’ t make black the clear color
m But black is the initial clear color
Did you draw something for one frame, but the next frame draws nothing?
® Are you using depth buffering? Did you forget to clear the depth buffer?
Remember there are near and far clip planes so clipping in Z, not just X & Y
Have you checked for glGetError?
m (Call glGetError once per frame while debugging so you can see errors that occur
m For release code, take out the glGetError calls

Not sure what state you are in?

m Use glGetlntegerv or glGetFloatv or other query functions to make sure that
OpenGL’ s state is what you think it is

Use glutSwapBuffers to flush your rendering and show to the visible window
m Likewise glFinish makes sure all pending commands have finished

Try reading
m http://www.slideshare.net/Mark Kilgard/avoiding-19-common-opengl-pitfalls
m This is well worth the time wasted debugging a problem that could be avoided

20 N
Y I)
| F i s
13 35 AV
/‘;3;{' v sl
;:A;i \g S _ﬂ‘;,a)
"\ \ B/ ¢/ %
N\ W/
oy

m Presentation approach and figures from
= David Luebke [2003]
m Brandon Lloyd [2007]

m Geometric Algebra for Computer Science
[Dorst, Fontijne, Mann]

mvia Mark Kilgard

