Intro to OpenGL III

Don Fussell
Computer Science Department
The University of Texas at Austin

Where are we?

■ Continuing the OpenGL basic pipeline

OpenGL API Example

glShadeModel(GL_SMOOTH); // smooth color interpolation glEnable(GL_DEPTH_TEST); // enable hidden surface removal
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); glBegin(GL_TRIANGLES); // every 3 vertexes makes a triangle glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100\%)
glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)
glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100\%)
glVertex3f($0.8,0.8,-0.2) ; / / \mathrm{XYZ}=(8 / 10,8 / 10,-2 / 10)$
glColor4ub $(0,0,255,255)$; // $\mathrm{RGBA}=(0,0,1,100 \%)$
glVertex3f($0.0,-0.8,-0.2)$; // XYZ $=(0,-8 / 10,-2 / 10)$

glEnd();

GLUT API Example

```
#include <GL/glut.h> // includes necessary OpenGL headers
void display() {
    // << insert code on prior slide here >>
    glutSwapBuffers();
}
void main(int argc, char **argv) {
```



```
    // request double-buffered color window with depth buffer
    glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
    glutInit(&argc, argv);
    glutCreateWindow("simple triangle");
    glutDisplayFunc(display); // function to render window
    glutMainLoop();
}
```


NDC to Window Space

- NDC is "normalized" to the $[-1,+1]^{3}$ cube
\square Nice for clipping
- But doesn' t yet map to pixels on the screen
- Next: a transform from NDC space to window space

Viewport and Depth Range

■ OpenGL has 2 commands to configure the state to map NDC space to window space
■ glViewport(GLint vx, GLint vy, GLsizei w, GLsizei h);
■ Typically programmed to the window's width and height for w $\& h$ and zero for both $v x \& v y$
■ Example: glViewport(0,0 , window_width, window_height);
■ glDepthRange(GLclampd n, GLclampd f);
$\square n$ for near depth value, f for far depth value

- Normally set to glDepthRange $(0,1)$
- Which is an OpenGL context's initial depth range state
- The mapping from NDC space to window space depends on $v x, v y, w, h, n$, and f

Viewport Transform

Viewport Transform

Mapping NDC to Window Space

\square Assume ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) is the NDC coordinate that's passed to glVertex3f in our simple_triangle example
\square Location in viewport (window space) is

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{x}}=(\mathrm{w} / 2)^{*} \mathrm{x}+\mathrm{v}_{\mathrm{x}}+\mathrm{w} / 2 \\
& \mathrm{w}_{\mathrm{y}}=(\mathrm{h} / 2)^{*} \mathrm{y}+\mathrm{v}_{\mathrm{y}}+\mathrm{h} / 2
\end{aligned}
$$

Transforming Vertices

- Assume glViewport $(0,0,500,500)$ has been called

Apply the Transforms

- First vertex :: ($-0.8,0.8,0.3$)
$\square \mathrm{w}_{\mathrm{x}}=(\mathrm{w} / 2)^{*}+\mathrm{v}_{\mathrm{x}}+\mathrm{w} / 2=250 *(-0.8)+250=50$
$\square \mathrm{w}_{\mathrm{y}}=(\mathrm{h} / 2)^{*} \mathrm{y}+\mathrm{v}_{\mathrm{y}}+\mathrm{h} / 2=250 *(0.8)+250=450$
- Second vertex $::(0.8,0.8,-0.2)$
$\square \mathrm{w}_{\mathrm{x}}=(\mathrm{w} / 2)^{*} \mathrm{x}+\mathrm{v}_{\mathrm{x}}+\mathrm{w} / 2=250 *(-0.8)+250=50$
$\square \mathrm{w}_{\mathrm{y}}=(\mathrm{h} / 2)^{*} \mathrm{y}+\mathrm{v}_{\mathrm{y}}+\mathrm{h} / 2=250 *(0.8)+250=450$
- Third vertex :: ($0,-0.8,-0.2$)
$\square \mathrm{w}_{\mathrm{x}}=(\mathrm{w} / 2) * \mathrm{x}+\mathrm{v}_{\mathrm{x}}+\mathrm{w} / 2=250 * 0+250=250$
$\square \mathrm{w}_{\mathrm{y}}=(\mathrm{h} / 2)^{*} \mathrm{y}+\mathrm{v}_{\mathrm{y}}+\mathrm{h} / 2=250 *(-0.8)+250=50$

Window Space Coordinates

- Assume glViewport $(0,0,500,500)$ has been called

Where is glViewport set?

- The simple_triangle program never calls glViewport
- That's OK because GLUT will call glViewport for you if you don't register your own per-window callback to handle when a window is reshaped (resized)
- Without a reshape callback registered, GLUT will simply call glViewport(0,0 , window_width, window_height);
- Alternatively, you can use glReshapeFunc to register a callback
- Then calling glViewport or otherwise tracking the window height becomes your application's responsibility
- Example reshape callback: void reshape(int w, int h) \{ glViewport($0,0, w, h$;
\}
- Example registering a reshape callback: glReshapeFunc(reshape);
- FYI: OpenGL maintains a lower-left window-space origin
- Whereas most 2D graphics APIs use upper-left

What about glDepthRange?

- Simple applications don't normally need to call glDepthRange
- Notice the simple_triangle program never calls glDepthRange
- Rationale
- The initial depth range of [0,1] is fine for most application
- It says the entire available depth buffer range should be used
- When the depth range is $[0,1]$ the equation for window-space z simplifies to $w z=1 / 2 \times z+1 / 2$

Rasterization

- Process of converting a clipped triangle into a set of sample locations covered by the triangle
- Also can rasterize points and lines

Concave vs. Convex

- Region is convex if any two points can be connected by a line segment where all points on this segment are also in the region
- Opposite is non-convex
- Concave means the region is connected but NOT convex
- Connected means there's some path (not necessarily a line) from every two points in the region that is entirely in the region

Determining a Triangle

- Classic view: 3 points determine a triangle
- Given 3 vertex positions, we determine a triangle
- Hence glVertex3f/ glVertex3f/glVertex3f

- Rasterization view: 3 oriented edge equations determine a triangle

Each oriented edge equation in form:

$$
A * x+B^{*} y+C \geq 0
$$

Oriented Edge Equations

7 Cases

$$
E_{i}(x, y)=A i x+B i y+C i
$$

Inside Triangle Test

- Evaluate edge equations at grid of sample points
- If sample position is "inside" all 3 edge equations, the position is "within" the triangle
- Implicitly parallel-all samples can be tested at once
- Good for hardware implementation
- Pixel-planes
- Pineda tiled extension

Creating Edge Equations

- Triangle rasterization need edge equations

■ How do we make edge equations?

- An edge is a line so determined by two points
- Each of the 3 triangle edges is determined by two of the 3 triangle vertexes (L, M, N)

How do we get

$$
A * x+B * y+C \geq 0
$$

for each edge from L, M, and N ?

Edge Equation Setup

- How do you get the coefficients A, B, and C? P is an

■ Determinants help-consider the LN edge:
arbitrary point

$$
\left|\begin{array}{cc}
N_{x}-L_{x} & N_{y}-L_{y} \\
P_{x}-L_{x} & P_{y}-L_{y}
\end{array}\right|>0 \begin{gathered}
\text { or more } \\
\text { succinctly }
\end{gathered}\left|\begin{array}{c}
N-L \\
P-L
\end{array}\right|>0
$$

- Expansion: $(\mathrm{Ly}-\mathrm{Ny}) \times \mathrm{Px}+(\mathrm{Nx}-\mathrm{Lx}) \times \mathrm{Py}+\mathrm{Ny} \times \mathrm{Lx}-\mathrm{N} \times \times \mathrm{Ly}>0$
- $\mathrm{A}_{\mathrm{LN}}=\mathrm{Ly}-\mathrm{Ny}$
- $\mathrm{B}_{\mathrm{LN}}=\mathrm{Nx}-\mathrm{Lx}$
- $\mathrm{C}_{\mathrm{LN}}=\mathrm{Ny} \times \mathrm{Lx}-\mathrm{Nx} \times \mathrm{Ly}$
- Geometric interpretation: twice signed area of the triangle LPN

Look at the LN edge

■ Expansion:
$($ Ly-Ny $) \times \mathrm{Px}+(\mathrm{Nx}-\mathrm{Lx}) \times \mathrm{Py}+\mathrm{Ny} \times \mathrm{Lx}-\mathrm{Nx} \times \mathrm{Ly}>$ 0

- $\mathrm{A}_{\mathrm{LN}}=\mathrm{Ly}-\mathrm{Ny}=450-450=0$
- $\mathrm{B}_{\mathrm{LN}}=\mathrm{Nx}-\mathrm{Lx}=50-450=-400$
- $\mathrm{C}_{\mathrm{LN}}=\mathrm{Ny} \times \mathrm{Lx}-\mathrm{Nx} \times \mathrm{Ly}=180,000$
\square Is center at $(250,250)$ in the triangle?
$-\mathrm{A}_{\mathrm{LN}} \times 250+\mathrm{B}_{\mathrm{LN}} \times 250+\mathrm{C}_{\mathrm{LN}}=$???
$■ 0 \times 250-400 \times 250+180,000=80,000$
$\square 80,000>0$ so $(250,250)$ is in the triangle

All Three Edge Equations

$■$ All three triangle edge equations:

$$
\left|\begin{array}{l}
N-P \\
M-P
\end{array}\right|>0 \quad\left|\begin{array}{l}
N-L \\
P-L
\end{array}\right|>0 \quad\left|\begin{array}{c}
P-L \\
M-L
\end{array}\right|>0
$$

- Satisfy all 3 and P is in the triangle
$■$ And then rasterize at sample location P
$■$ Caveat: if $\left|\begin{array}{l}N-L \\ M-L\end{array}\right|<0 \begin{aligned} & \text { reverse the } \\ & \text { comparsion sense }\end{aligned}$

Other Rasterization Approaches

■ Subdivision approaches
■ Easy to split a triangle into 4 triangles
■ Keep splitting triangles until they are slightly smaller
 than your samples

■ Often called micro-polygon rendering

- Chief advantage is being able to apply displacements during the subdivision
- Edge walking approaches

■ Often used by CPU-based rasterizers

- Much more sequential than Pineda approach

■ Work efficient and amendable to
 fixed-point implementation

Micropolygons

- Rasterization becomes a geometry dicing process
- Approach taken by Pixar
- For production rendering when scene detail and quality is at a premium; interactivity, not so much
- High-level representation is generally patches rather than mere triangles

Displacement mapping of a meshed sphere [Pixar, RenderMan]

Simple Fragment Shading

- For all samples (pixels) within the triangle, evaluate the interpolated color
- Requires having math to determine color at the sample (x, y) location

Color Interpolation

- Our simple triangle is drawn with smooth color interpolation
- Recall: glShadeModel(GL_SMOOTH)
- How is color interpolated?

- Think of a plane equation to computer each color component (say red) as a function of (x, y)
- Just done for samples positions within the triangle

$$
\text { "redness" }=A_{\text {red }} x+B_{\text {red }} y+C_{\text {red }}
$$

Setup Plane Equation

$■$ Setup plane equation to solve for "red" as a function of (x,y)

$$
\left[\begin{array}{l}
L_{\text {red }} \\
M_{\text {red }} \\
N_{\text {red }}
\end{array}\right]=\left[\begin{array}{ccc}
L_{x} & L_{y} & 1 \\
M_{x} & M_{y} & 1 \\
N_{x} & N_{y} & 1
\end{array}\right]\left[\begin{array}{l}
A_{\text {red }} \\
B_{\text {red }} \\
C_{\text {red }}
\end{array}\right]
$$

Solve for plane equation coefficients A, B, C

$$
\left[\begin{array}{ccc}
L_{x} & L_{y} & 1 \\
M_{x} & M_{y} & 1 \\
N_{x} & N_{y} & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
L_{\text {red }} \\
M_{\text {red }} \\
N_{\text {red }}
\end{array}\right]=\left[\begin{array}{l}
A_{\text {red }} \\
B_{\text {red }} \\
C_{\text {red }}
\end{array}\right]
$$

Do the same for green, blue, and alpha (opacity)...

More Intuitive Way to Interpolate

- Barycentric coordinates

$\operatorname{attribute}(\mathrm{P})=\alpha \times \operatorname{attribute}(\mathrm{L})+\beta \times \operatorname{attribute}(\mathrm{M})+\gamma \times \operatorname{attribute}(\mathrm{N})$

Hardware Triangle Rendering Rates

- Top GPUs can setup over a billion triangles per second for rasterization
- Triangle setup \& rasterization is just one of the (many, many) computation steps in GPU rendering

A Simplified Graphics Pipeline

Interpolating Window Space Z

- Plane equation coefficients (A, B, C) generated by multiplying inverse matrix by vector of per-vertex attributes

$$
\left[\begin{array}{ccc}
L_{x} & L_{y} & 1 \\
M_{x} & M_{y} & 1 \\
N_{x} & N_{y} & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
L_{z} \\
M_{z} \\
N_{z}
\end{array}\right]=\left[\begin{array}{c}
A_{z} \\
B_{z} \\
C_{z}
\end{array}\right]
$$

Simple Triangle Vertex Depth

■ Assume glViewport($0,0,500,500$) has been called

- And glDepthRange(0,1)

Interpolating Window Space Z

■ Substitute per-vertex (x,y) and Z values for the L, M, and N vertexes

$$
\left[\begin{array}{ccc}
50 & 450 & 1 \\
250 & 50 & 1 \\
450 & 450 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
0.65 \\
0.4 \\
0.4
\end{array}\right]=\left[\begin{array}{l}
A_{z} \\
B_{z} \\
C_{z}
\end{array}\right] \begin{aligned}
& \mathrm{A}_{\mathrm{z}}=-0.000625 \\
& \mathrm{~B}_{\mathrm{z}}=0.0003125 \\
& \mathrm{C}_{\mathrm{z}}=0.540625
\end{aligned}
$$

Complete Z plane equation
$\mathrm{Z}(\mathrm{x}, \mathrm{y})=-0.000625^{*} \mathrm{x}+0.0003125^{*} \mathrm{y}+0.540625$

Depth Buffer Visualized

Depth-tested
3D scene

Z or depth values
white $=1.0$ (far), black $=0.0$ (near)

Depth Buffer Algorithm

- Simple, brute force
- Every color sample in framebuffer has corresponding depth sample
- Discrete, solves occlusion in pixel space
- Memory intensive, but fast for hardware
- Basic algorithm
- Clear the depth buffer to its "maximum far" value (generally 1.0)
- Interpolate fragment's Z
- Read fragment's corresponding depth buffer sample Z value
- If interpolated Z is less than (closer) than Z from depth buffer
- Then replace the depth buffer Z with the fragment's Z
- And also allow the fragment's shaded color to update the corresponding color value in color buffer
■ Otherwise discard fragment
- Do not update depth or color buffer

Depth Buffer Example

■ Fragment gets rasterized

- Fragment's Z value is interpolated
- Resulting Z value is 0.65
- Read the corresponding pixel's Z value
- Reads the value 0.8
- Evaluate depth function
- 0.65 GL_LESS 0.8 is true
- So 0.65 replaces 0.8 in the depth buffer
- Second primitive rasterizes same pixel
- Fragment's Z value is interpolated
- Resulting Z value is 0.72

■ Read the corresponding pixel's Z value
■ Reads the value 0.65

- Evaluate depth function
- 0.72 GL_LESS 0.65 is false
- So the fragment' s depth value and color value are discarded

Depth Test Operation

OpenGL API for Depth Testing

- Simple to use
- Most applications just "enable" depth testing and hidden surfaces are removed
- Enable it: glEnable(GL_DEPTH_TEST)
- Disabled by default
- Must have depth buffer allocated for it to work
- Example: glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH)
- More control
- Clearing the depth buffer

■ glClear(GL_DEPTH_BUFFER_BIT | otherBits)

- glClearDepth(zvalue)
- Initial value is 1.0 , the maximum Z value in the depth buffer
- glDepthFunc(zfunc)
- zfunc is one of GL_LESS, GL_GREATER, GL_EQUAL, GL_GEQUAL, GL_LEQUAL, GL_ALWAYS, GL_NEVER, GL_NOTEQUAL
- Initial value is GL_LESS
- glDepthMask(boolean)
- True means write depth value if depth test passes; if false, don't write

■ Initial value is GL_TRUE

- glDepthRange

■ Maps NDC Z values to window-space Z values

- Initially [0,1], mapping to the entire available depth range

Not Just for View Occlusion

Depth Buffers also Useful for Shadow Generation

Without Shadows

Projected Shadow Map

Light's View

With Shadows

A Simplified Graphics Pipeline

Next Lecture

- Graphics Math, Transforms
- Interpolation, vector math, and number representations for computer graphics

Next Lecture

- Finish OpenGL pipeline
- Transforms and Graphics Math
- Interpolation, vector math, and number representations for computer graphics

Programming tips

-3D graphics, whether OpenGL or Direct3D or any other API, can be frustrating

- You write a bunch of code and the result is

Nothing but black window; where did your rendering go??

Things to Try

- Set your clear color to something other than black!
- It is easy to draw things black accidentally so don' t make black the clear color
- But black is the initial clear color
- Did you draw something for one frame, but the next frame draws nothing?
- Are you using depth buffering? Did you forget to clear the depth buffer?
- Remember there are near and far clip planes so clipping in Z , not just $\mathrm{X} \& \mathrm{Y}$
- Have you checked for glGetError?
- Call glGetError once per frame while debugging so you can see errors that occur
- For release code, take out the glGetError calls
- Not sure what state you are in?
- Use glGetIntegerv or glGetFloatv or other query functions to make sure that OpenGL's state is what you think it is
- Use glutSwapBuffers to flush your rendering and show to the visible window
- Likewise glFinish makes sure all pending commands have finished
- Try reading
- http://www.slideshare.net/Mark_Kilgard/avoiding-19-common-opengl-pitfalls
- This is well worth the time wasted debugging a problem that could be avoided

Thanks

- Presentation approach and figures from

■David Luebke [2003]

- Brandon Lloyd [2007]
- Geometric Algebra for Computer Science [Dorst, Fontijne, Mann]
■ via Mark Kilgard

