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Vectors 
  A vector is a direction and a magnitude  
  Does NOT include a point of reference  
  Usually thought of as an arrow in space  
  Vectors can be added together and multiplied by scalars  
  Zero vector has no length or direction  

 

Vectors
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Vector Spaces 
  Set of vectors 
  Closed under the following operations 

Vector addition: v1 + v2 = v3 

Scalar multiplication: s v1 = v2 
 

Linear combinations: 
  

  Scalars come from some field F 
e.g. real or complex numbers 

  Linear independence 
  Basis 
  Dimension 
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Vector Space Axioms 
 Vector addition is associative and commutative 
 Vector addition has a (unique) identity element 
(the 0 vector) 
 Each vector has an additive inverse 

So we can define vector subtraction as adding an 
inverse 

 Scalar multiplication has an identity element (1) 
 Scalar multiplication distributes over vector 
addition and field addition 
 Multiplications are compatible (a(bv)=(ab)v) 
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Coordinate Representation 

 Pick a basis, order the vectors in it, then all 
vectors in the space can be represented as 
sequences of coordinates, i.e. coefficients of 
the basis vectors, in order. 
 Example: 

Cartesian 3-space 
Basis: [i  j  k] 
Linear combination: xi + yj + zk 
Coordinate representation: [x  y  z] 

][][][ 212121222111 bzazbyaybxaxzyxbzyxa +++=+
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Row and Column Vectors 

 We can represent a vector, v = (x,y), in the plane 

as a column vector  

 
 
 

as a row vector 
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Linear Transformations 

 Given vector spaces V and W 
 A function         is a linear map or 
linear transformation if 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

f :V→W

f (a1v1 +...+ amvm ) = a1 f (v1)+...+ am f (vm )
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Transformation Representation 

  We can represent a 2-D transformation M by a matrix 
 
 

  If v is a column vector, M goes on the left: 

 

  If v is a row vector, MT goes on the right: 
 

  We will use column vectors. 
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Two-dimensional transformations 

 Here's all you get with a 2 x 2 transformation 
matrix M: 

 
 
 So: 

 We will develop some intimacy with the 
elements a, b, c, d… 
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Identity 

 Suppose we choose a=d=1, b=c=0: 
Gives the identity matrix: 

 Doesn't change anything € 
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Scaling 

  Suppose b=c=0, but let a and d take on any positive value: 
Gives a scaling matrix: 

Provides differential (non-uniform) scaling in x and y: 
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Reflection 

 Suppose b=c=0, but let either a or d go negative. 
 Examples: 
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Shear 

 Now leave a=d=1 and experiment with b 
 The matrix 

  gives: 
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Effect on unit square 
 Let's see how a general 2 x 2 transformation 
M affects the unit square:  
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Effect on unit square, cont. 

 Observe: 
Origin invariant under M 
M can be determined just by knowing how the 
corners (1,0) and (0,1) are mapped 
a and d give x- and y-scaling 
b and c give x- and y-shearing 
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Rotation 

  From our observations of the effect on the unit square, it 
should be easy to write down a matrix for “rotation about 
the origin”: 

 
 
 

  Thus 
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Linear transformations 
  The unit square observations also tell us the 2x2 matrix transformation 

implies that we are representing a vector in a new coordinate system: 

 
 
 
 
 

  where u=[a c]T and w=[b d]T are vectors that define a new basis for a 
linear space. 

  The transformation to this new basis (a.k.a., change of basis) is a 
linear transformation. 
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Limitations of the 2 x 2 matrix 

 A 2 x 2 linear transformation matrix allows 
Scaling 
Rotation 
Reflection 
Shearing 

  Q: What important operation does that 
leave out? 



Points 
 A point is a location in space 
 Cannot be added or multiplied together 
 Subtract two points to get the vector between them 
 Points are not vectors  
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Points

• A point is a location in space

• Cannot be added or multiplied together

• Subtract two points to get the vector between them
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Affine transformations 

  In order to incorporate the idea that both the basis and the 
origin can change, we augment the linear space u, w with 
an origin t. 
  Note that while u and w are basis vectors, the origin t is a 
point. 
  We call u, w, and t (basis and origin) a frame for an affine 
space. 
  Then, we can represent a change of frame as: 

 
 
  This change of frame is also known as an affine 
transformation. 
  How do we write an affine transformation with matrices? 

!p = x ⋅u+ y ⋅w+ t



Basic Vector Arithmetic 
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Parametric line segment 

 Or line, or ray, or just linear interpolation 

  

Line segment  
Ray 
Line 
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p = p0 + t(p1 −p0 ) = (1− t)p0 + tp1
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Vector dot product 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

u ⋅v = rx + sy+ tz = u v cos(φ)

Dot product

• Formula: 

• Alternately: 

• Where φ is the angle between the vectors



Projection 

Projection (u component parallel to v) 
 

Rejection (u component orthogonal to v) 
Particularly useful when vectors are normalized 
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Projection / rejection

• Projection: 

• W is the part of  U that lies on V

• Rejection: Just U - W

w = u ⋅v
v ⋅v

v

u−w



Cross product intuition

• If  U & V point along the same line, W = 0

• Useful for constructing local coordinate frames

• Length of  cross product is area of  parallelogram 

spanned by U and V (divide by 2 for area of  the 

triangle)

Cross product 

 w is orthogonal to u and v 
   
        area of parallelogram 
 use right-hand rule 
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w = u× v =
i j k
r s t
x y z

=

sz− ty
tx − rz
ry− sx
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Cross product

• Formula: 

• Creates a vector that is:

• Perpendicular to the inputs

• Length 

• Right-hand orientedw = u v sin(φ)
w

u× v = −(v×u)
(u× v)×w ≠ u× (v×w)



Determinants 

det(MT) = det(M) 
det(AB) = det(A)det(B) 
 if det(M) = 0, M is singular, has no inverse 
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a b
c d
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Plane equation 

 Given normal vector N orthogonal to the 
plane and any point p in the plane 

 

 For a triangle 
 
 Order matters, usually CCW 
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N ⋅p+ d = 0
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+ d = ax + by+ cz+ d = 0Triangle normals

• Every triangle lies in a plane

• 2 choices of  normal, pick one by convention

• CCW winding is usually used

• Formula: 

N = norm((v1 − v0 )× (v2 − v0 ))
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Homogeneous Coordinates 
  To represent transformations among affine frames, we can loft the 

problem up into 3-space, adding a third component to every point: 

 
 
 
 
 

 
 

  Note that [a c 0]T and [b d 0]T represent vectors and 
 [tx ty 1]T, [x y 1]T and [x' y' 1]T represent points. 
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Homogeneous coordinates 
This allows us to perform translation as well as the linear 

transformations as a matrix operation: 
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Rotation about arbitrary points 

1.  Translate q to origin 
2.  Rotate 
3.  Translate back 
Line up the matrices for these step in right to left order and multiply. 

  

  Note: Transformation order is important!! 

Until now, we have only considered rotation about the origin. 

With homogeneous coordinates, you can specify a rotation, Rq, 
about any point q = [qx qy 1]T with a matrix: 
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θ
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Points and vectors 
From now on, we can represent points as have an additional coordinate of w=1. 

Vectors have an additional coordinate of w=0.  Thus, a change of origin has no 
effect on vectors. 

Q: What happens if we multiply a matrix by a vector? 

These representations reflect some of the rules of affine operations on points and 
vectors: 

 

 

 

One useful combination of affine operations is: 

Q: What does this describe? 
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vector + vector →
vector ⋅ vector →

point −point →
point + vector →

point + point →
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p(t) = p0 + tv
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Barycentric coordinates 
A set of points can be used to create an affine frame.  Consider a 
triangle ABC and a point p: 

 
 

We can form a frame with an origin C and the vectors from C to the 
other vertices: 
 

We can then write P in this coordinate frame 

 

The coordinates (α, β, γ) are called the barycentric coordinates of 
p relative to A, B, and C. 

A 

B C

p 
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p =αu+ βv + t
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u = A−C v = B−C t = C
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Computing barycentric coordinates 
For the triangle example we can compute the barycentric 

coordinates of P: 

Cramer’s rule gives the solution: 

 
 
Computing the determinant of the denominator gives: 
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Barycentric coords from area ratios 
Now, let’s rearrange the equation from two slides ago: 

 
 
The determinant is then just the z-component of 
(B-A) × (C-A), which is two times the area of triangle ABC! 
Thus, we find: 
 
 

Where SArea(RST) is the signed area of a triangle, which can 
be computed with cross-products. 

€ 

BxCy − ByCx + AyCx − AxCy + AxBy − AyBx

= (Bx − Ax )(Cy − Ay ) − (By − Ay )(Cx − Ax )
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Affine and convex combinations 
Note that we seem to have added points together, which we said was 
illegal, but as long as they have coefficients that sum to one, it’s ok. 

We call this an affine combination.  More generally 

is a proper affine combination if: 

 

Note that if the αi ‘s are all positive, the result is more specifically called a 
convex combination. 

Q: Why is it called a convex combination?  
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Basic 3-D transformations: scaling 

Some of the 3-D transformations are just like 
the 2-D ones.   

For example, scaling: 
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Translation in 3D 
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Rotation in 3D 
Rotation now has more possibilities in 3D: 

x

z

y

xR

yR

zR

Use right hand rule 
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Shearing in 3D 

 Shearing is also more complicated.  Here is one 
example: 

 

 We call this a shear with respect to the x-z plane. 
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Preservation of affine combinations 
A transformation F is an affine transformation if it preserves affine 

combinations: 

 where the pi are points, and: 

Clearly, the matrix form of F has this property. 
One special example is a matrix that drops a dimension.   For example: 

 
 
 
 

This transformation, known as an orthographic projection, is an affine 
transformation. 

We’ll use this fact later… 
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Properties of affine transformations 

 Here are some useful properties of affine 
transformations:  

Lines map to lines 
Parallel lines remain parallel 
Midpoints map to midpoints (in fact, ratios are 
always preserved) 
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Next Lecture 
  More Math and Transforms 
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Programming tips 
 3D graphics, whether OpenGL or Direct3D 
or any other API, can be frustrating 

You write a bunch of code and the result is 

Nothing but black window; where did your 
rendering go?? 
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Things to Try 
  Set your clear color to something other than black! 

It is easy to draw things black accidentally so don’t make black the clear color 
But black is the initial clear color 

  Did you draw something for one frame, but the next frame draws nothing? 
Are you using depth buffering?  Did you forget to clear the depth buffer? 

  Remember there are near and far clip planes so clipping in Z, not just X & Y 
  Have you checked for glGetError? 

Call glGetError once per frame while debugging so you can see errors that occur 
For release code, take out the glGetError calls 

  Not sure what state you are in? 
Use glGetIntegerv or glGetFloatv or other query functions to make sure that 
OpenGL’s state is what you think it is 

  Use glutSwapBuffers to flush your rendering and show to the visible window 
Likewise glFinish makes sure all pending commands have finished 

  Try reading 
http://www.slideshare.net/Mark_Kilgard/avoiding-19-common-opengl-pitfalls 
This is well worth the time wasted debugging a problem that could be avoided 
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Thanks 

 Material for these slides provided by 
Christian Miller 
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