
University of Texas at Austin    CS354  -  Computer Graphics    Don Fussell 

Vector and Affine Math 

Don Fussell 
Computer Science Department 

The University of Texas at Austin 



Vectors 
  A vector is a direction and a magnitude  
  Does NOT include a point of reference  
  Usually thought of as an arrow in space  
  Vectors can be added together and multiplied by scalars  
  Zero vector has no length or direction  

 

Vectors

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Vector Spaces 
  Set of vectors 
  Closed under the following operations 

Vector addition: v1 + v2 = v3 

Scalar multiplication: s v1 = v2 
 

Linear combinations: 
  

  Scalars come from some field F 
e.g. real or complex numbers 

  Linear independence 
  Basis 
  Dimension 

vv =∑
=

i

n

i
ia

1

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Vector Space Axioms 
 Vector addition is associative and commutative 
 Vector addition has a (unique) identity element 
(the 0 vector) 
 Each vector has an additive inverse 

So we can define vector subtraction as adding an 
inverse 

 Scalar multiplication has an identity element (1) 
 Scalar multiplication distributes over vector 
addition and field addition 
 Multiplications are compatible (a(bv)=(ab)v) 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Coordinate Representation 

 Pick a basis, order the vectors in it, then all 
vectors in the space can be represented as 
sequences of coordinates, i.e. coefficients of 
the basis vectors, in order. 
 Example: 

Cartesian 3-space 
Basis: [i  j  k] 
Linear combination: xi + yj + zk 
Coordinate representation: [x  y  z] 

][][][ 212121222111 bzazbyaybxaxzyxbzyxa +++=+



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Row and Column Vectors 

 We can represent a vector, v = (x,y), in the plane 

as a column vector  

 
 
 

as a row vector 
€ 

x
y
" 

# 
$ 
% 

& 
' 

€ 

x y[ ]



Linear Transformations 

 Given vector spaces V and W 
 A function         is a linear map or 
linear transformation if 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

f :V→W

f (a1v1 +...+ amvm ) = a1 f (v1)+...+ am f (vm )



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Transformation Representation 

  We can represent a 2-D transformation M by a matrix 
 
 

  If v is a column vector, M goes on the left: 

 

  If v is a row vector, MT goes on the right: 
 

  We will use column vectors. 

v'= vMT

!x !y"
#

$
%= x y"

#
$
%

a c
b d

"

#
&

$

%
'

v'=Mv

!x
!y

"

#
$
$

%

&
'
'
= a b

c d

"

#
$

%

&
'

x
y

"

#
$
$

%

&
'
'

€ 

M =
a b
c d
" 

# 
$ 

% 

& 
' 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Two-dimensional transformations 

 Here's all you get with a 2 x 2 transformation 
matrix M: 

 
 
 So: 

 We will develop some intimacy with the 
elements a, b, c, d… 

€ 

" x 
" y 

# 

$ 
% 
& 

' 
( =

a b
c d
# 

$ 
% 

& 

' 
( 

x
y
# 

$ 
% 
& 

' 
( 

€ 

" x = ax + by
" y = cx + dy



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Identity 

 Suppose we choose a=d=1, b=c=0: 
Gives the identity matrix: 

 Doesn't change anything € 

1 0
0 1
" 

# 
$ 

% 

& 
' 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Scaling 

  Suppose b=c=0, but let a and d take on any positive value: 
Gives a scaling matrix: 

Provides differential (non-uniform) scaling in x and y: 

€ 

a 0
0 d
" 

# 
$ 

% 

& 
' 

€ 

" x = ax
" y = dy

€ 

2 0
0 2
" 

# 
$ 

% 

& 
' 

€ 

1 2 0
0 2

" 

# 
$ 

% 

& 
' 

1

2

1 2

1

2

1 2

1

2

1 2

x

y

x

y

x

y



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Reflection 

 Suppose b=c=0, but let either a or d go negative. 
 Examples: 

x

y

x

y

x

y

x

y

€ 

−1 0
0 1
# 

$ 
% 

& 

' 
( 

€ 

1 0
0 −1
# 

$ 
% 

& 

' 
( 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Shear 

 Now leave a=d=1 and experiment with b 
 The matrix 

  gives: 
€ 

1 b
0 1
" 

# 
$ 

% 

& 
' 

€ 

" x = x + by
" y = y

1

1

1

1
x

y

x

y

€ 

1 1
0 1
" 

# 
$ 

% 

& 
' 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Effect on unit square 
 Let's see how a general 2 x 2 transformation 
M affects the unit square:  

1

1

p q

rs

x

y

x

y

€ 

a b
c d
" 

# 
$ 

% 

& 
' p q r s[ ] = ( p ( q ( r ( s [ ]

a b
c d
" 

# 
$ 

% 

& 
' 
0 1 1 0
0 0 1 1
" 

# 
$ 

% 

& 
' =

0 a a + b b
0 c c + d d
" 

# 
$ 

% 

& 
' 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Effect on unit square, cont. 

 Observe: 
Origin invariant under M 
M can be determined just by knowing how the 
corners (1,0) and (0,1) are mapped 
a and d give x- and y-scaling 
b and c give x- and y-shearing 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Rotation 

  From our observations of the effect on the unit square, it 
should be easy to write down a matrix for “rotation about 
the origin”: 

 
 
 

  Thus 

1

1
x

y

x

y

€ 

1
0
" 

# 
$ 
% 

& 
' →

cos(θ)
sin(θ)
" 

# 
$ 

% 

& 
' 

0
1
" 

# 
$ 
% 

& 
' →

−sin(θ)
cos(θ)
" 

# 
$ 

% 

& 
' 

€ 

MR = R(θ) =
cos(θ) −sin(θ)
sin(θ) cos(θ)
$ 

% 
& 

' 

( 
) 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Linear transformations 
  The unit square observations also tell us the 2x2 matrix transformation 

implies that we are representing a vector in a new coordinate system: 

 
 
 
 
 

  where u=[a c]T and w=[b d]T are vectors that define a new basis for a 
linear space. 

  The transformation to this new basis (a.k.a., change of basis) is a 
linear transformation. 

v'=Mv

= a b
c d

!

"
#

$

%
&

x
y

!

"
#
#

$

%
&
&

= u w!
"

$
%

x
y

!

"
#
#

$

%
&
&

= x ⋅u+ y ⋅w



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Limitations of the 2 x 2 matrix 

 A 2 x 2 linear transformation matrix allows 
Scaling 
Rotation 
Reflection 
Shearing 

  Q: What important operation does that 
leave out? 



Points 
 A point is a location in space 
 Cannot be added or multiplied together 
 Subtract two points to get the vector between them 
 Points are not vectors  

 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Points

• A point is a location in space

• Cannot be added or multiplied together

• Subtract two points to get the vector between them



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Affine transformations 

  In order to incorporate the idea that both the basis and the 
origin can change, we augment the linear space u, w with 
an origin t. 
  Note that while u and w are basis vectors, the origin t is a 
point. 
  We call u, w, and t (basis and origin) a frame for an affine 
space. 
  Then, we can represent a change of frame as: 

 
 
  This change of frame is also known as an affine 
transformation. 
  How do we write an affine transformation with matrices? 

!p = x ⋅u+ y ⋅w+ t



Basic Vector Arithmetic 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

u =
r
s
t

!

"

#
#
#

$

%

&
&
&
v =

x
y
z

!

"

#
#
#

$

%

&
&
&
u+ v =

r + x
s+ y
t + z

!

"

#
#
#

$

%

&
&
&

av =
ax
ay
az

!

"

#
#
#

$

%

&
&
&

v = x2 + y2 + z2 norm(v) = v
v



Parametric line segment 

 Or line, or ray, or just linear interpolation 

  

Line segment  
Ray 
Line 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

p = p0 + t(p1 −p0 ) = (1− t)p0 + tp1

x
y
z

!

"

#
#
#

$

%

&
&
&
=

x0
y0
z0

!

"

#
#
#
#

$

%

&
&
&
&

+ t
x1 − x0
y1 − y0
z1 − z0

!

"

#
#
#
#

$

%

&
&
&
&

=

(1− t)x0 + t x1
(1− t)y0 + t y1
(1− t)z0 + tz1

!

"

#
#
#
#

$

%

&
&
&
&

0 ≤ t ≤1
0 ≤ t ≤∞
−∞≤ t ≤∞



Vector dot product 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

u ⋅v = rx + sy+ tz = u v cos(φ)

Dot product

• Formula: 

• Alternately: 

• Where φ is the angle between the vectors



Projection 

Projection (u component parallel to v) 
 

Rejection (u component orthogonal to v) 
Particularly useful when vectors are normalized 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Projection / rejection

• Projection: 

• W is the part of  U that lies on V

• Rejection: Just U - W

w = u ⋅v
v ⋅v

v

u−w



Cross product intuition

• If  U & V point along the same line, W = 0

• Useful for constructing local coordinate frames

• Length of  cross product is area of  parallelogram 

spanned by U and V (divide by 2 for area of  the 

triangle)

Cross product 

 w is orthogonal to u and v 
   
        area of parallelogram 
 use right-hand rule 
   

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

w = u× v =
i j k
r s t
x y z

=

sz− ty
tx − rz
ry− sx

#

$

%
%
%

&

'

(
(
(

Cross product

• Formula: 

• Creates a vector that is:

• Perpendicular to the inputs

• Length 

• Right-hand orientedw = u v sin(φ)
w

u× v = −(v×u)
(u× v)×w ≠ u× (v×w)



Determinants 

det(MT) = det(M) 
det(AB) = det(A)det(B) 
 if det(M) = 0, M is singular, has no inverse 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

a b
c d

= ad − bc

a b c
d e f
g h i

= a e f
h i

− b
d f
g i

+ c d e
g h

= aei− afh+ bfg− bdi+ cdh− ceg



Plane equation 

 Given normal vector N orthogonal to the 
plane and any point p in the plane 

 

 For a triangle 
 
 Order matters, usually CCW 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

N ⋅p+ d = 0

a b c!
"

#
$

x
y
z

!

"

%
%
%

#

$

&
&
&
+ d = ax + by+ cz+ d = 0Triangle normals

• Every triangle lies in a plane

• 2 choices of  normal, pick one by convention

• CCW winding is usually used

• Formula: 

N = norm((v1 − v0 )× (v2 − v0 ))



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Homogeneous Coordinates 
  To represent transformations among affine frames, we can loft the 

problem up into 3-space, adding a third component to every point: 

 
 
 
 
 

 
 

  Note that [a c 0]T and [b d 0]T represent vectors and 
 [tx ty 1]T, [x y 1]T and [x' y' 1]T represent points. 

!p =Mp

=

a b tx
c d ty
0 0 1

"

#

$
$
$
$

%

&

'
'
'
'

x
y
1

"

#

$
$
$

%

&

'
'
'

= u w t"
#

%
&

x
y
1

"

#

$
$
$

%

&

'
'
'

= x ⋅u+ y ⋅w+1⋅ t



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Homogeneous coordinates 
This allows us to perform translation as well as the linear 

transformations as a matrix operation: 

€ 

" p = MTp
" x 
" y 
1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

=

1 0 tx

0 1 ty

0 0 1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

x
y
1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

" x = x + tx

" y = y + ty

1
x

y

x

y

1 1

1

€ 

1 0 1
0 1 1 2
0 0 1

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Rotation about arbitrary points 

1.  Translate q to origin 
2.  Rotate 
3.  Translate back 
Line up the matrices for these step in right to left order and multiply. 

  

  Note: Transformation order is important!! 

Until now, we have only considered rotation about the origin. 

With homogeneous coordinates, you can specify a rotation, Rq, 
about any point q = [qx qy 1]T with a matrix: 

x

y

x

y

x

y

x

y

q
θ



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Points and vectors 
From now on, we can represent points as have an additional coordinate of w=1. 

Vectors have an additional coordinate of w=0.  Thus, a change of origin has no 
effect on vectors. 

Q: What happens if we multiply a matrix by a vector? 

These representations reflect some of the rules of affine operations on points and 
vectors: 

 

 

 

One useful combination of affine operations is: 

Q: What does this describe? 

  

€ 

vector + vector →
vector ⋅ vector →

point −point →
point + vector →

point + point →

€ 

p(t) = p0 + tv



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Barycentric coordinates 
A set of points can be used to create an affine frame.  Consider a 
triangle ABC and a point p: 

 
 

We can form a frame with an origin C and the vectors from C to the 
other vertices: 
 

We can then write P in this coordinate frame 

 

The coordinates (α, β, γ) are called the barycentric coordinates of 
p relative to A, B, and C. 

A 

B C

p 

€ 

•

€ 

p =αu+ βv + t

€ 

u = A−C v = B−C t = C



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Computing barycentric coordinates 
For the triangle example we can compute the barycentric 

coordinates of P: 

Cramer’s rule gives the solution: 

 
 
Computing the determinant of the denominator gives: 

€ 

αA + βB + γC =

Ax Bx Cx

Ay By Cy

1 1 1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

α

β

γ

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

=

px
py
1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

€ 

BxCy − ByCx + AyCx − AxCy + AxBy − AyBx
€ 

α =

px Bx Cx

py By Cy

1 1 1
Ax Bx Cx

Ay By Cy

1 1 1

β =

Ax px Cx

Ay py Cy

1 1 1
Ax Bx Cx

Ay By Cy

1 1 1

γ =

Ax Bx px
Ay By py
1 1 1
Ax Bx Cx

Ay By Cy

1 1 1



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Barycentric coords from area ratios 
Now, let’s rearrange the equation from two slides ago: 

 
 
The determinant is then just the z-component of 
(B-A) × (C-A), which is two times the area of triangle ABC! 
Thus, we find: 
 
 

Where SArea(RST) is the signed area of a triangle, which can 
be computed with cross-products. 

€ 

BxCy − ByCx + AyCx − AxCy + AxBy − AyBx

= (Bx − Ax )(Cy − Ay ) − (By − Ay )(Cx − Ax )

€ 

α =
SArea(pBC)
SArea(ABC)

β =
SArea(ApC)
SArea(ABC)

γ =
SArea(ABp)
SArea(ABC)



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Affine and convex combinations 
Note that we seem to have added points together, which we said was 
illegal, but as long as they have coefficients that sum to one, it’s ok. 

We call this an affine combination.  More generally 

is a proper affine combination if: 

 

Note that if the αi ‘s are all positive, the result is more specifically called a 
convex combination. 

Q: Why is it called a convex combination?  

1
1

n
i

i
α

=

=∑
  

€ 

p =α1p1 +…+αnpn



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Basic 3-D transformations: scaling 

Some of the 3-D transformations are just like 
the 2-D ones.   

For example, scaling: 

x x

y

z

y

z

€ 

" x 
" y 
" z 
1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

x
y
z
1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Translation in 3D 

x x

y

z

y

z

€ 

" x 
" y 
" z 
1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

x
y
z
1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Rotation in 3D 
Rotation now has more possibilities in 3D: 

x

z

y

xR

yR

zR

Use right hand rule 

€ 

Rx (θ) =

1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

Ry (θ) =

cos(θ) 0 sin(θ) 0
0 1 0 0

−sin(θ) 0 cos(θ) 0
0 0 0 1

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

Rz(θ) =

cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0
0 0 1 0
0 0 0 1

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Shearing in 3D 

 Shearing is also more complicated.  Here is one 
example: 

 

 We call this a shear with respect to the x-z plane. 

x x

y

z

y

z

€ 

" x 
" y 
" z 
1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

1 b 0 0
0 1 0 0
0 0 1 0
0 0 0 1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

x
y
z
1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Preservation of affine combinations 
A transformation F is an affine transformation if it preserves affine 

combinations: 

 where the pi are points, and: 

Clearly, the matrix form of F has this property. 
One special example is a matrix that drops a dimension.   For example: 

 
 
 
 

This transformation, known as an orthographic projection, is an affine 
transformation. 

We’ll use this fact later… 

1
1

n
i

i
α

=

=∑

€ 

" x 
" y 
1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

=

1 0 0 0
0 1 0 0
0 0 0 1

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

x
y
z
1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

  

€ 

F(α1p1 +…+αnpn ) =α1F(p1 ) +…+αnF(pn )



University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 

Properties of affine transformations 

 Here are some useful properties of affine 
transformations:  

Lines map to lines 
Parallel lines remain parallel 
Midpoints map to midpoints (in fact, ratios are 
always preserved) 

p

q

r
p'

q'

r'
s

t

s
t

:

:
! 

    

€ 

ratio =
pq
qr

=
s
t

=
" p " q 
" q " r 



Next Lecture 
  More Math and Transforms 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Programming tips 
 3D graphics, whether OpenGL or Direct3D 
or any other API, can be frustrating 

You write a bunch of code and the result is 

Nothing but black window; where did your 
rendering go?? 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Things to Try 
  Set your clear color to something other than black! 

It is easy to draw things black accidentally so don’t make black the clear color 
But black is the initial clear color 

  Did you draw something for one frame, but the next frame draws nothing? 
Are you using depth buffering?  Did you forget to clear the depth buffer? 

  Remember there are near and far clip planes so clipping in Z, not just X & Y 
  Have you checked for glGetError? 

Call glGetError once per frame while debugging so you can see errors that occur 
For release code, take out the glGetError calls 

  Not sure what state you are in? 
Use glGetIntegerv or glGetFloatv or other query functions to make sure that 
OpenGL’s state is what you think it is 

  Use glutSwapBuffers to flush your rendering and show to the visible window 
Likewise glFinish makes sure all pending commands have finished 

  Try reading 
http://www.slideshare.net/Mark_Kilgard/avoiding-19-common-opengl-pitfalls 
This is well worth the time wasted debugging a problem that could be avoided 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Thanks 

 Material for these slides provided by 
Christian Miller 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 


