Viewing and Modeling

Don Fussell
Computer Science Department
The University of Texas at Austin
A Simplified Graphics Pipeline

1. Application
2. Vertex batching & assembly
3. Triangle assembly
4. Triangle clipping
5. NDC to window space
6. Triangle rasterization
7. Fragment shading
8. Depth testing
9. Color update

Depth buffer
Framebuffer

University of Texas at Austin CS354 - Computer Graphics Don Fussell
A few more steps expanded

Application

Vertex batching & assembly

Vertex transformation → Lighting → Texture coordinate generation → Triangle assembly

User defined clipping → View frustum clipping → Perspective divide

NDC to window space

Back face culling → Triangle rasterization

Fragment shading

Depth testing → Depth buffer

Color update → Framebuffer
Conceptual Vertex Transformation

glVertex* API commands

object-space coordinates

$$(x_o, y_o, z_o, w_o)$$

Modelview matrix

eye-space coordinates

$$(x_e, y_e, z_e, w_e)$$

User-defined clip planes

clipped eye-space coordinates

$$(x_e, y_e, z_e, w_e)$$

Projection matrix

clip-space coordinates

$$(x_c, y_c, z_c, w_c)$$

View-frustum clip planes

clipped clip-space coordinates

$$(x_c, y_c, z_c, w_c)$$

Perspective division

normalized device coordinates (NDC)

$$(x_n, y_n, z_n, 1/w_c)$$

Viewport + Depth Range transformation

to primitive rasterization

window-space coordinates

$$(x_w, y_w, z_w, 1/w_c)$$
Pipeline View

modelview transformation → projection transformation → clipping

nonsingular

perspective division → projection

4D → 3D 3D → 2D
Computer Viewing

- There are three aspects of the viewing process, all of which are implemented in the pipeline,
 - Positioning the camera
 - Setting the model-view matrix
 - Selecting a lens
 - Setting the projection matrix
 - Clipping
 - Setting the view volume
The World and Camera Frames

- When we work with representations, we work with n-tuples or arrays of scalars.
- Changes in frame are then defined by 4 x 4 matrices.
- In OpenGL, the base frame that we start with is the world frame.
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix.
- Initially these frames are the same ($\mathbf{M} = \mathbf{I}$).
Vertex Transformation

- **Object-space vertex position transformed by a general linear projective transformation**
- **Expressed as a 4x4 matrix**

\[
\begin{bmatrix}
 x_c \\
 y_c \\
 z_c \\
 w_c
\end{bmatrix} =
\begin{bmatrix}
 m_0 & m_4 & m_8 & m_{12} \\
 m_1 & m_5 & m_9 & m_{13} \\
 m_2 & m_6 & m_{10} & m_{14} \\
 m_3 & m_7 & m_{11} & m_{15}
\end{bmatrix}
\begin{bmatrix}
 x_o \\
 y_o \\
 z_o \\
 w_o
\end{bmatrix}
\]
The OpenGL Camera

- In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction
- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity
Moving the Camera

If objects are on both sides of $z=0$, we must move camera frame

$$
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{bmatrix}
$$
If we want to visualize object with both positive and negative \(z \) values we can either

- Move the camera in the positive \(z \) direction
 - Translate the camera frame
- Move the objects in the negative \(z \) direction
 - Translate the world frame

Both of these views are equivalent and are determined by the model-view matrix

- Want a translation \(\text{glTranslatef}(0.0, 0.0, -d); \)
- \(d > 0 \)
Translate Transform

- Prototype

- `glTranslatef(GLfloat x, GLfloat y, GLfloat z)`

- Post-concatenates this matrix

\[
\begin{bmatrix}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
glTranslatef Matrix

- Modelview specification
 - glLoadIdentity();
 - glTranslatef(0,0,-14)
 - x translate=0, y translate=0, z translate=-14
 - Point at (0,0,0) would move to (0,0,-14)
 - Down the negative Z axis

- Matrix

\[
\begin{bmatrix}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

the translation vector
General Camera Motion

- We can position the camera anywhere by a sequence of rotations and translations
- Example: side view
 - Move camera to the origin
 - Rotate the camera
 - Model-view matrix $C = RT$

University of Texas at Austin CS354 - Computer Graphics Don Fussell
OpenGL code

Remember that last transformation specified is first to be applied

```c
glMatrixMode(GL_MODELVIEW)
glLoadIdentity();
glRotatef(90.0, 0.0, 1.0, 0.0);
glTranslatef(0.0, 0.0, -d);
```
A Better Viewing Matrix

“Look at” Transform

Concept

- Given the following
 - a 3D world-space “eye” position
 - a 3D world-space center of view position (looking “at”), and
 - an 3D world-space “up” vector

- Then an affine (non-projective) 4x4 matrix can be constructed
 - For a view transform mapping world-space to eye-space

A ready implementation

- The OpenGL Utility library (GLU) provides it

 - gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,
 GLdouble atx, GLdouble atz, GLdouble atz,
 GLdouble upx, GLdouble upy, GLdouble upz);
gluLookAt

\texttt{gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)}
“Look At” in Practice

- Consider our prior view situation
 - Instead of an arbitrary view…
 - …we just translated by 14 in negative Z direction
 - `glTranslatef(0,0,14)`

- What this means in “Look At” parameters
 - `(eyex,eyey,eyez) = (0,0,14)`
 - `(atx,aty,atz) = (0,0,0)`
 - `(upx,upy,upz) = (0,1,0)`

```
[ 1  0  0  0 ]
[ 0  1  0  0 ]
[ 0  0  1 -14 ]
[ 0  0  0  1 ]
```

Not surprising both are “just translates in Z”
since the “Look At” parameters
already have use looking down the negative Z axis
The “Look At” Algorithm

- Vector math
 - \(Z = \text{eye} - \text{at} \)
 - \(Z = \text{normalize}(Z) \) /* normalize means \(Z / \text{length}(Z) */
 - \(Y = \text{up} \)
 - \(X = Y \times Z \) /* \(\times \) means vector cross product! */
 - \(Y = Z \times X \) /* orthgonalize */
 - \(X = \text{normalize}(X) \)
 - \(Y = \text{normalize}(Y) \)

- Then build the following affine 4x4 matrix

\[
\begin{bmatrix}
X_x & X_y & X_z & -X \cdot \text{eye} \\
Y_x & Y_y & Y_z & -Y \cdot \text{eye} \\
Z_x & Z_y & Z_z & -Z \cdot \text{eye} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Warning: Algorithm is prone to failure if normalize divides by zero (or very nearly does)

So

1. Don’t let \(Z \) or \(\text{up} \) be zero length vectors
2. Don’t let \(Z \) and \(\text{up} \) be coincident vectors

University of Texas at Austin CS354 - Computer Graphics Don Fussell
"Look At" Examples

```c
gluLookAt(0,0,14,  // eye (x,y,z)
0,0,0,       // at (x,y,z)
0,1,0);      // up (x,y,z)

Same as the glTranslatef(0,0,-14) as expected
```

```c
gluLookAt(1,2.5,11,  // eye (x,y,z)
0,0,0,       // at (x,y,z)
0,1,0);      // up (x,y,z)

Similar to original, but just a little off angle
due to slightly perturbed eye vector
```
“Look At” Major Eye Changes

gluLookAt(-2.5, 11, 1, 0, 0, 0, 0, 1, 0); // eye (x,y,z) at (x,y,z) up (x,y,z)

Eye is “above” the scene

gluLookAt(-2.5, -11, 1, 0, 0, 0, 0, 1, 0); // eye (x,y,z) at (x,y,z) up (x,y,z)

Eye is “below” the scene
"Look At" Changes to AT and UP

```c
// Original eye position, but "at" position shifted

gluLookAt(0,0,14, 2,-3,0, 0,1,0); // eye (x,y,z) // at (x,y,z) // up (x,y,z)

Original eye position, but "at" position shifted

// Eye is "below" the scene


gluLookAt(0,0,14, 0,0,0, 1,1,0); // eye (x,y,z) // at (x,y,z) // up (x,y,z)
```
The LookAt Function

- The GLU library contains the function gluLookAt to form the required modelview matrix through a simple interface
- Note the need for setting an up direction
- Still need to initialize
- Can concatenate with modeling transformations
- Example: isometric view of cube aligned with axes

```c
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
```
Other Viewing APIs

- The LookAt function is only one possible API for positioning the camera
- Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles
Two Transforms in Sequence

OpenGL thinks of the projective transform as really two 4x4 matrix transforms

\[
\begin{bmatrix}
x_e \\
y_e \\
z_e \\
w_e
\end{bmatrix}
= \begin{bmatrix}
MV_0 & MV_4 & MV_8 & MV_{12} \\
MV_1 & MV_5 & MV_9 & MV_{13} \\
MV_2 & MV_6 & MV_{10} & MV_{14} \\
MV_3 & MV_7 & MV_{11} & MV_{15}
\end{bmatrix}
\begin{bmatrix}
x_o \\
y_o \\
z_o \\
w_o
\end{bmatrix}
\]

FIRST
object-space to eye-space

SECOND
eye-space to clip-space

\[
\begin{bmatrix}
x_c \\
y_c \\
z_c \\
w_c
\end{bmatrix}
= \begin{bmatrix}
P_0 & P_4 & P_8 & P_{12} \\
P_1 & P_5 & P_9 & P_{13} \\
P_2 & P_6 & P_{10} & P_{14} \\
P_3 & P_7 & P_{11} & P_{15}
\end{bmatrix}
\begin{bmatrix}
x_e \\
y_e \\
z_e \\
w_e
\end{bmatrix}
\]

16 Multiply-Add operations

Another 16 Multiply-Add operations
Matrixes can associate (combine)

Combination of the modelview and projection matrix = modelview-projection matrix

or often simply the “MVP” matrix

\[
\begin{bmatrix}
MVP_0 & MVP_4 & MVP_8 & MVP_{12} \\
MVP_1 & MVP_5 & MVP_9 & MVP_{13} \\
MVP_2 & MVP_6 & MVP_{10} & MVP_{14} \\
MVP_3 & MVP_7 & MVP_{11} & MVP_{15}
\end{bmatrix}
=
\begin{bmatrix}
P_0 & P_4 & P_8 & P_{12} \\
P_1 & P_5 & P_9 & P_{13} \\
P_2 & P_6 & P_{10} & P_{14} \\
P_3 & P_7 & P_{11} & P_{15}
\end{bmatrix}
\begin{bmatrix}
MV_0 & MV_4 & MV_8 & MV_{12} \\
MV_1 & MV_5 & MV_9 & MV_{13} \\
MV_2 & MV_6 & MV_{10} & MV_{14} \\
MV_3 & MV_7 & MV_{11} & MV_{15}
\end{bmatrix}
\]

Matrix multiplication is **associative** (but not commutative)
A(BC) = (AB)C, but ABC≠CBA

concatenation is 64 Multiply-Add operations, done by OpenGL driver
Specifying the Transforms

- Specified in two parts
- First the projection
 - `glMatrixMode(GL_PROJECTION);`
 - `glLoadIdentity();`
 - `glFrustum(-4, +4, -3, +3, 5, 80);` // left & right top & bottom near & far

- Second the model-view
 - `glMatrixMode(GL_MODELVIEW);`
 - `glLoadIdentity();`
 - `glTranslatef(0, 0, -14);`
 - So objects centered at (0,0,0) would be at (0,0,-14) in eye-space

Resulting projection matrix

\[
\begin{bmatrix}
1.25 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 \\
0 & 0 & -1.1333 & -10.667 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

Resulting modelview matrix

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Transform composition via matrix multiplication

\[
\begin{bmatrix}
1.25 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 \\
0 & 0 & -1.1333 & -10.667 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} =
\begin{bmatrix}
1.25 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 \\
0 & 0 & -1.1333 & 5.2 \\
0 & 0 & -1 & 14 \\
\end{bmatrix}
\]

Resulting modelview-projection matrix
Now Draw Some Objects

- Draw a wireframe cube
 - `glColor3f(1,0,0); // red`
 - `glutWireCube(6);`
 - 6x6x6 unit cube centered at origin (0,0,0)

- Draw a teapot in the cube
 - `glColor3f(0,0,1); // blue`
 - `glutSolidTeapot(2.0);`
 - centered at the origin (0,0,0)
 - handle and spout point down the X axis
 - top and bottom in the Y axis

- As we’d expect given a frustum transform, the cube is in perspective
 - The teapot is too but more obvious to observe with a wireframe cube
What We’ve Accomplished

- **Simple perspective**
 - With `glFrustum`
 - Establishes how eye-space maps to clip-space

- **Simple viewing**
 - With `glTranslatef`
 - Establishes how world-space maps to eye-space
 - All we really did was “wheel” the camera 14 units up the Z axis
 - No actual “modeling transforms”, just viewing
 - Modeling would be rotating, scaling, or otherwise transform the objects with the view
 - Arguably the modelview matrix is really just a “view” matrix in this example

(0,0,14) (0,0,0)
Some Simple Modeling

- Try some modeling transforms to move teapot
- But leave the cube alone for reference

```c
glPushMatrix();
    glTranslatef(1.5, -0.5, 0);
    glutSolidTeapot(2.0);
glPopMatrix();

glPushMatrix();
    glScalef(1.5, 1.0, 1.5);
    glutSolidTeapot(2.0);
glPopMatrix();

glPushMatrix();
    glRotatef(30, 1, 1, 1);
    glutSolidTeapot(2.0);
glPopMatrix();
```

We “Bracket” the modeling transform with `glPushMatrix/glPopMatrix` commands so the modeling transforms are “localized” to the particular object.
Some lighting makes the modeling more intuitive

We’ve not discussed lighting yet but per-vertex lighting allows a virtual light source to “interact” with the object’s surface orientation and material properties
Let's consider the “combined” modelview matrix with the rotation

- glRotate(30, 1,1,1) defines a rotation matrix
 - Rotating 30 degrees…
 - …around an axis in the (1,1,1) direction

\[
\begin{bmatrix}
0.9107 & -0.2440 & 0.3333 & 0 \\
0.3333 & 0.9107 & -0.2440 & 0 \\
-0.2440 & 0.3333 & 0.9107 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.9107 & -0.2440 & 0.3333 & 0 \\
0.3333 & 0.9107 & -0.2440 & 0 \\
-0.2440 & 0.3333 & 0.9107 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.9107 & -0.2440 & 0.3333 & 0 \\
0.3333 & 0.9107 & -0.2440 & 0 \\
-0.2440 & 0.3333 & 0.9107 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

projection view model
Combining All Three

Matrix-by-matrix multiplication is associative so
\[PVM = P (VM) = (PV)M \]

OpenGL keeps V and M “together” because eye-space is a convenient space for lighting

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0.9107 & -0.2440 & 0.3333 & 0 \\
0.3333 & 0.9107 & -0.2440 & 0 \\
-0.2440 & 0.3333 & 0.9107 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1.25 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 \\
0 & 0 & -1.1333 & -10.667 \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
0.9107 & -0.2440 & 0.3333 & 0 \\
0.3333 & 0.9107 & -0.2440 & 0 \\
-0.2440 & 0.3333 & 0.9107 & -14 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1.1384 & -0.3050 & 0.4167 & 0 \\
0.5556 & 1.5178 & -0.4067 & 0 \\
0.2766 & -0.3778 & -1.0321 & 5.2 \\
0.2440 & -0.3333 & -0.9107 & 14
\end{bmatrix}
\]
Object- to Clip-space

\[
\begin{bmatrix}
 x_{world} \\
 y_{world} \\
 z_{world} \\
 w_{world}
\end{bmatrix} = \begin{bmatrix}
 0.9107 & -0.2440 & 0.3333 & 0 \\
 0.3333 & 0.9107 & -0.2440 & 0 \\
 -0.2440 & 0.3333 & 0.9107 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x_{object} \\
 y_{object} \\
 z_{object} \\
 w_{object}
\end{bmatrix}
\]

view

\[
\begin{bmatrix}
 x_{eye} \\
 y_{eye} \\
 z_{eye} \\
 w_{eye}
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & -14 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x_{world} \\
 y_{world} \\
 z_{world} \\
 w_{world}
\end{bmatrix}
\]

projection

\[
\begin{bmatrix}
 x_{clip} \\
 y_{clip} \\
 z_{clip} \\
 w_{clip}
\end{bmatrix} = \begin{bmatrix}
 1.25 & 0 & 0 & 0 \\
 0 & 1.667 & 0 & 0 \\
 0 & 0 & -1.1333 & -10.667 \\
 0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
 x_{eye} \\
 y_{eye} \\
 z_{eye} \\
 w_{eye}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x_{clip} \\
 y_{clip} \\
 z_{clip} \\
 w_{clip}
\end{bmatrix} = \begin{bmatrix}
 1.1384 & -0.3050 & 0.4167 & 0 \\
 0.5556 & 1.5178 & -0.4067 & 0 \\
 0.2766 & -0.3778 & -1.0321 & 5.2 \\
 0.2440 & -0.3333 & -0.9107 & 14
\end{bmatrix}
\begin{bmatrix}
 x_{object} \\
 y_{object} \\
 z_{object} \\
 w_{object}
\end{bmatrix}
\]

object-to-world-to-eye-to-clip

object-to-eye-to-clip

object-to-clip
Each character, wall, ceiling, floor, and light have their own modeling transformation
Representing Objects

- Interested in object’s boundary
- Various approaches
 - Procedural representations
 - Often fractal
 - Explicit polygon (triangle) meshes
 - By far, the most popular method
 - Curved surface patches
 - Often displacement mapped
- Implicit representation
 - Blobby, volumetric

- Sierpinski gasket
- Fractal tree
- Quake 2 key frame triangle meshes
- Utah Teapot
- Blobby modeling in RenderMan

[Philip Winston]
Focus on Triangle Meshes

- Easiest approach to representing object boundaries
- So what is a mesh and how should it be stored?
 - Simplest view
 - A set of triangles, each with its “own” 3 vertices
 - Essentially “triangle soup”
 - Yet triangles in meshes share edges by design
 - Sharing edges implies sharing vertices
 - More sophisticated view
 - Store single set of unique vertexes in array
 - Then each primitive (triangle) specifies 3 indices into array of vertexes
 - More compact
 - Vertex data size >> index size
 - Avoids redundant vertex data
 - Separates “topology” (how the mesh is connected) from its “geometry” (vertex positions and attributes)
 - Connectivity can be deduced more easily
 - Makes mesh processing algorithms easier
 - Geometry data can change without altering the topology
Consider a Tetrahedron

- Simplest closed volume
- Consists of 4 triangles and 4 vertices
 - (and 4 edges)

topology

vertex list

0: (x0,y0,z0)
1: (x1,y1,z1)
2: (x2,y2,z2)
3: (x3,y3,z3)

triangle list

0: v0,v1,v2
1: v1,v3,v2
2: v3,v0,v2
3: v1,v0,v3

geometry

*potentially on-GPU!
Benefits of Vertex Array Approach

- Unique vertices are stored once
 - Saves memory
 - On CPU, on disk, and on GPU
- Matches OpenGL vertex array model of operation
 - And this matches the efficient GPU mode of operation
 - The GPU can “cache” post-transformed vertex results by vertex index
 - Saves retransformation and redundant vertex fetching
 - Direct3D has the same model
- Allows vertex data to be stored on-GPU for even faster vertex processing
 - OpenGL supported vertex buffer objects for this
Next Lecture

- More about triangle mesh representation
- Scene graphs