Character Animation and Skinning
Objectives

- Introduce the basics of character animation
- Introduce skinning
- Introduce basic linear blend skinning
Character Animation

- Skeletons and skin
 - **skeleton** – a hierarchy of bones or joints
 - note arrows pointing from parent to child joint
 - **skin** – the polygon mesh defining the body surface

http://www.okino.com/conv/skinning.htm
Binding

- Define transform between joint and skin spaces in **rest** or **bind** pose
- Associate skin vertices to subset of the joints

[Link to skinning information](http://www.okino.com/conv/skinning.htm)
Animation

- Move the joints and the skin moves with them
- This deforms the mesh from its rest position

http://www.okino.com/conv/skinning.htm
Skin

- Skin is a set of polygonal meshes
- A mesh is a collection of (connected) polygons

http://udn.epicgames.com/Three/UT3CustomCharacters.html
A skin mesh is defined in its own local frame.
Binding

- Each joint (bone) has its own local frame
- Let B_j be the transformation from local joint frame j to the skin mesh local frame in the binding pose.
- B_j is represented by a binding matrix
Rigid skinning – basic idea

- Associate a group of vertices to a single joint j
- Let T_j be the transformation from joint j local space to world space
- Then the skin vertex transform to world space for vertices v_k associated with joint j is $v'_k = T_j B_j^{-1} v_k$
Joint motion

- When joint j moves, T_j changes and the skin vertices move with it.
- The relative positions of the vertices in the local joint frame don’t change
- $v'_k = T_j B_j^{-1} v_k$
Problems with rigid skinning

- Simple but low quality because large distortions happen when bends form at joints

Parag Chaudhuri, 2012
Linear Blend Skinning

- Adds flexibility to fix artifacts but still simple and fast
- Commonly used in games
- Vertices associated with multiple joints, not just one
- Vertex transform is a linear combination of the transforms associated with its joints. Each vertex has weights for this linear combination assigned to it

\[v'_k = \sum_i w_{i,k} T_i B_i^{-1} v_k \]

\[\forall k \sum_i w_{i,k} = 1 \text{ and } 0 \leq w_{i,k} \leq 1 \]

- Vertex normals can be computed similarly
Fewer artifacts

• With proper weights many but not all artifacts are eliminated or improved

\[
\{ j \}
\]

\[
\{ j+1 \}
\]

Parag Chaudhuri, 2012
Skin::Update()

Compute $M_i = T_i B_i^{-1}$ for each joint. Note that B_i^{-1} can be precomputed and stored.

For each vertex compute world position and normal.

Skin::Draw()

Initialize ModelView matrix.

Draw skin polygons using global positions and vertices.
Problems

- Skin collapse at bends

Figure 1: The skeleton subspace deformation algorithm. The deformed position of a point \(p \) lies on the line \(pp'' \) defined by the images of that point rigidly transformed by the neighboring skeletal coordinate frames, resulting in the characteristic ‘collapsing elbow’ problem (solid line).

Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation, Lewis, Cordner and Fong, SIGGRAPH 2000
Problems

• Skin collapses at twists

Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation, Lewis, Cordner and Fong, SIGGRAPH 2000
Dual Quaternion Skinning

- Better solution, nearly as fast

Geometric Skinning with Approximate Dual Quaternion Blending, Kavan Collins, Zara and O'Sullivan, ACMTOG 2008
Linear Blend Skinning

• Problems
 • Binding is difficult – what joints should each vertex be associated with?
 • Weight assignment is not intuitive and very time-consuming
 • Still have collapse with linear blend skinning

• Advantages
 • Simple
 • Fast
 • Easy GPU implementation