Anti-aliased and accelerated ray tracing
Reading

- **Required:**
 - Watt, sections 12.5.3 – 12.5.4, 14.7

- **Further reading:**
One of the most common rendering artifacts is the “jaggies”. Consider rendering a white polygon against a black background:

- We would instead like to get a smoother transition:
Anti-aliasing

- **Q**: How do we avoid aliasing artifacts?
 1. Sampling:
 2. Pre-filtering:
 3. Combination:

- **Example - polygon:**
Polygon anti-aliasing

Without antialiasing

With antialiasing

Magnification
We would like to compute the average intensity in the neighborhood of each pixel.

When casting one ray per pixel, we are likely to have aliasing artifacts.
To improve matters, we can cast more than one ray per pixel and average the result.

A.k.a., **super-sampling and averaging down**.
Vanilla ray tracing is really slow!

Consider: \(m \times m \) pixels, \(k \times k \) supersampling, and \(n \) primitives, average ray path length of \(d \), with 2 rays cast recursively per intersection.

Complexity =

For \(m=1,000,000, k = 5, n = 100,000, d=8 \)…very expensive!!

In practice, some acceleration technique is almost always used.

We’ve already looked at reducing \(d \) with adaptive ray termination.

Now we look at reducing the effect of the \(k \) and \(n \) terms.
Antialiasing by adaptive sampling

- Casting many rays per pixel can be unnecessarily costly.
- For example, if there are no rapid changes in intensity at the pixel, maybe only a few samples are needed.
- Solution: **adaptive sampling**.

![Diagram showing adaptive sampling](image)

- **Q**: When do we decide to cast more rays in a particular area?
Let’s say you were intersecting a ray with a polyhedron:

- Straightforward method
 - intersect the ray with each triangle
 - return the intersection with the smallest t-value.

- Q: How might you speed this up?
Ray Tracing Acceleration Techniques

Approaches

- Faster Intersection
 - Uniform grids
 - Spatial hierarchies
 - k-d, oct-tree, bsp
 - Hierarchical grids
 - Hierarchical bounding volumes (HBV)
 - Tighter bounds
 - Faster intersector

- Fewer Rays
 - Early ray termination
 - Adaptive sampling

- Generalized Rays
 - Beam tracing
 - Cone tracing
 - Pencil tracing
Another approach is **uniform spatial subdivision**.

Idea:
- Partition space into cells (voxels)
- Associate each primitive with the cells it overlaps
- Trace ray through voxel array *using fast incremental arithmetic* to step from cell to cell
Uniform Grids

- Preprocess scene
- Find bounding box
Uniform Grids

- Preprocess scene
 - Find bounding box
 - Determine resolution
 \[n_v = n_x n_y n_z \propto n_o \]
 \[\max(n_x, n_y, n_z) = d^{3/n_o} \]
Uniform Grids

- Preprocess scene
 - Find bounding box
 - Determine resolution
 - Place object in cell, if object overlaps cell

\[\max(n_x, n_y, n_z) = d \frac{3}{2} \sqrt{n_o} \]
Uniform Grids

- **Preprocess scene**
 - Find bounding box
 - Determine resolution
- Place object in cell, if object overlaps cell
- Check that object intersects cell

\[
\max(n_x, n_y, n_z) = d^{\frac{3}{n_o}}
\]
Uniform Grids

- Preprocess scene
- Traverse grid
 - 3D line – 3D-DDA
 - 6-connected line
Caveat: Overlap

- Optimize for objects that overlap multiple cells

- Traverse until \(t_{\text{min}}(\text{cell}) > t_{\text{max}}(\text{ray}) \)
- Problem: Redundant intersection tests:
- Solution: Mailboxes
 - Assign each ray an increasing number
 - Primitive intersection cache (mailbox)
 - Store last ray number tested in mailbox
 - Only intersect if ray number is greater
Non-uniform spatial subdivision

- Still another approach is non-uniform spatial subdivision.

- Other variants include k-d trees and BSP trees.

- Various combinations of these ray intersections techniques are also possible. See Glassner and pointers at bottom of project web page for more.
Non-uniform spatial subdivision

- Best partitioning approach - k-d trees or perhaps BSP trees
 - More adaptive to actual scene structure
 - BSP vs. k-d tradeoff between speed from simplicity and better adaptability

- Non-partitioning approach
 - Hierarchical bounding volumes
 - Build similar to k-d tree build
Kd-tree - Build
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Kd-tree
Surface Area and Rays

- Number of rays in a given direction that hit an object is proportional to its projected area.

- The total number of rays hitting an object is $4\pi \bar{A}$.

- Crofton’s Theorem:
 - For a convex body
 $$\bar{A} = \frac{S}{4}$$
 - For example: sphere
 $$S = 4\pi r^2 \quad \bar{A} = A = \pi r^2$$
Surface Area and Rays

- The probability of a ray hitting a convex shape that is completely inside a convex cell equals

\[
\Pr[r \cap S_o \mid r \cap S_c] = \frac{S_o}{S_c}
\]
Surface Area Heuristic

Intersection time
\(t_i \)

Traversal time
\(t_t \)

\(t_i = 80t_t \)

\[C = t_t + p_a N_a t_i + p_b N_b t_i \]
Surface Area Heuristic

\[S_p = 2n \text{ splits} \]

\[
p_a = \frac{S_a}{S} \quad p_b = \frac{S_b}{S}
\]
Ray Traversal Kernel

Depth first traversal

\[\text{Intersect}(L,t_{\text{min}},t_{\text{max}}) \]
\[\text{Intersect}(L,t_{\text{min}},t^*) \]
\[\text{Intersect}(R,t^*,t_{\text{max}}) \]
\[\text{Intersect}(R,t_{\text{min}},t_{\text{max}}) \]
Kd-tree - Traversal

Stack:
Current: Root

The University of Texas at Austin
Department of Computer Science
Don Fussell
Kd-tree - Traversal

Stack:
- \(R \)

Current:
- \(L \)

The University of Texas at Austin Department of Computer Science Don Fussell
Kd-tree - Traversal

Stack:
R

Current:
LL

The University of Texas at Austin
Department of Computer Science
Don Fussell
Kd-tree - Traversal

Stack: LLR,R
Current: LLL
Kd-tree - Traversal

Stack: LLR,R

Current: LLLR
Kd-tree - Traversal

Stack:
- R

Current:
- LLL
Kd-tree - Traversal

Stack:

Current:

R
Kd-tree - Traversal

Stack: RR

Current: RL
Kd-tree - Traversal

Stack:

Current: RR
Kd-tree - Traversal

Stack:

Current: RRR

The University of Texas at Austin
Department of Computer Science
Don Fussell
Kd-tree - Traversal
Variations

kd-tree

oct-tree

bsp-tree
Hierarchical bounding volumes

- We can generalize the idea of bounding volume acceleration with hierarchical bounding volumes (or bounding volume hierarchies (BVH)).

 ![Diagram of hierarchical bounding volumes]

 Intersect with largest B.V...
 ...then intersect with children...
 ...until you reach the leaf nodes - the primitives.

- Key: build balanced trees with tight bounding volumes.

Many different kinds of bounding volumes.
Note that bounding volumes can overlap.