Ray Tracing
Geometric optics

- Modern theories of light treat it as both a wave and a particle.
- We will take a combined and somewhat simpler view of light – the view of geometric optics.
- Here are the rules of geometric optics:
 - Light is a flow of photons with wavelengths. We'll call these flows “light rays.”
 - Light rays travel in straight lines in free space.
 - Light rays do not interfere with each other as they cross.
 - Light rays obey the laws of reflection and refraction.
 - Light rays travel form the light sources to the eye, but the physics is invariant under path reversal (reciprocity).
Synthetic pinhole camera

- The most common imaging model in graphics is the synthetic pinhole camera: light rays are collected through an infinitesimally small hole and recorded on an **image plane**.

- For convenience, the image plane is usually placed in front of the camera, giving a non-inverted 2D projection (image).
- Viewing rays emanate from the **center of projection** (COP) at the center of the lens (or pinhole).
- The image of an object point P is at the intersection of the viewing ray through P and the image plane.
Eye vs. light ray tracing

- Where does light begin?
 - At the light: light ray tracing (a.k.a., forward ray tracing or photon tracing)

- At the eye: eye ray tracing (a.k.a., backward ray tracing)

- We will generally follow rays from the eye into the scene.
Precursors to ray tracing

- **Local illumination**
 - Cast one eye ray,
 - then shade according to light

- **Appel (1968)**
 - Cast one eye ray + one ray to light
In 1980, Turner Whitted introduced ray tracing to the graphics community.
- Combines eye ray tracing + rays to light
- Recursively traces rays

Algorithm:
1. For each pixel, trace a primary ray in direction V to the first visible surface.
2. For each intersection, trace secondary rays:
 - Shadow rays in directions L_i to light sources
 - Reflected ray in direction R.
 - Refracted ray or transmitted ray in direction T.

![Diagram of ray tracing algorithm](image)
Whitted algorithm (cont'd)

Let's look at this in stages:

- Primary rays
- Shadow rays
- Reflection rays
- Refracted rays
Shading

- A ray is defined by an origin P and a unit direction d and is parameterized by t:
 - $P + td$
- Let $I(P, d)$ be the intensity seen along that ray. Then:
 - $I(P, d) = I_{\text{direct}} + I_{\text{reflected}} + I_{\text{transmitted}}$
- where
 - I_{direct} is computed from the Phong model
 - $I_{\text{reflected}} = k_r I(Q, R)$
 - $I_{\text{transmitted}} = k_t I(Q, T)$
- Typically, we set $k_r = k_s$ and $k_t = 1 - k_s$.
Reflection and transmission

- Law of reflection:
 - $\theta_i = \theta_r$

- Snell's law of refraction:
 - $\eta_i \sin \theta_i = \eta_t \sin \theta_t$

- where η_i, η_t are indices of refraction.
Total Internal Reflection

- The equation for the angle of refraction can be computed from Snell's law:

- What happens when $\eta_i > \eta_t$?
- When θ_t is exactly 90°, we say that θ_I has achieved the “critical angle” θ_c.
- For $\theta_I > \theta_c$, no rays are transmitted, and only reflection occurs, a phenomenon known as “total internal reflection” or TIR.
Ray-tracing pseudocode

We build a ray traced image by casting rays through each of the pixels.

```plaintext
function traceImage (scene):
    for each pixel (i,j) in image
        S = pixelToWorld(i,j)
        P = COP
        d = (S - P)/|| S – P||
        I(i,j) = traceRay(scene, P, d)
    end for
end function
```
Ray-tracing pseudocode, cont’d

```plaintext
function traceRay(scene, P, d):
    (t, N, mtrl) ← scene.intersect (P, d)
    Q ← ray (P, d) evaluated at t
    I = shade(q, N, mtrl, scene)
    R = reflectDirection(N, -d)
    I ← I + mtrl.k_r * traceRay(scene, Q, R)
    if ray is entering object then
        n_i = index_of_air
        n_t = mtrl.index
    else
        n_i = mtrl.index
        n_t = index_of_air
    if (mtrl.k_t > 0 and notTIR (n_i, n_t, N, -d)) then
        T = refractDirection (n_i, n_t, N, -d)
        I ← I + mtrl.k_t * traceRay(scene, Q, T)
    end if
    return I
end function
```
Terminating recursion

- **Q:** How do you bottom out of recursive ray tracing?

- **Possibilities:**
Shading pseudocode

Next, we need to calculate the color returned by the \textit{shade} function.

\begin{verbatim}
function shade(mtrl, scene, Q, N, d):
 I ← mtrl.k_e + mtrl.k_a * scene->I_a
 for each light source do:
 atten = distanceAttenuation(Q) * shadowAttenuation(scene, Q)
 I ← I + atten*(diffuse term + spec term)
 end for
 return I
end function
\end{verbatim}
Shadow attenuation

- Computing a shadow can be as simple as checking to see if a ray makes it to the light source.
- For a point light source:

```cpp
function PointLight::shadowAttenuation(scene, P)
    d = (P.position - P).normalize()
    (t, N, mtrl) ← scene.intersect(P, d)
    Q ← ray(t)
    if Q is before the light source then:
        atten = 0
    else
        atten = 1
    end if
    return atten
end function
```

- Q: What if there are transparent objects along a path to the light source?
Ray-plane intersection

- We can write the equation of a plane as:
 \[ax + by + cz + d = 0 \]

- The coefficients \(a, b, \) and \(c \) form a vector that is normal to the plane, \(\mathbf{n} = [a \ b \ c]^T \). Thus, we can re-write the plane equation as:
 \[\mathbf{n} \cdot \mathbf{p}(t) + d = 0 \]
 \[\mathbf{n} \cdot (\mathbf{P} + td) + d = 0 \]

- We can solve for the intersection parameter (and thus the point):
 \[t = -\frac{\mathbf{n} \cdot \mathbf{P} + d}{\mathbf{n} \cdot \mathbf{d}} \]
Ray-triangle intersection

- To intersect with a triangle, we first solve for the equation of its supporting plane:
 \[\mathbf{n} = (\mathbf{A} - \mathbf{C}) \times (\mathbf{B} - \mathbf{C}) \]
 \[d = -(\mathbf{n} \cdot \mathbf{A}) \]

- Then, we need to decide if the point is inside or outside of the triangle.
 - Solution 1: compute barycentric coordinates from 3D points.
 - What do you do with the barycentric coordinates?
Barycentric coordinates

A set of points can be used to create an affine frame. Consider a triangle ABC and a point p:

![Diagram of triangle ABC with vector p]

We can form a frame with an origin C and the vectors from C to the other vertices:

$$u = A - C \quad v = B - C \quad t = C$$

We can then write P in this coordinate frame

$$p = \alpha u + \beta v + t$$

The coordinates (α, β, γ) are called the barycentric coordinates of p relative to A, B, and C.
Computing barycentric coordinates

For the triangle example we can compute the barycentric coordinates of \(P \):

\[
\alpha A + \beta B + \gamma C = \begin{bmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}
\]

Cramer’s rule gives the solution:

\[
\alpha = \begin{vmatrix} p_x & B_x & C_x \\ p_y & B_y & C_y \\ 1 & 1 & 1 \end{vmatrix}, \quad \beta = \begin{vmatrix} A_x & p_x & C_x \\ A_y & p_y & C_y \\ 1 & 1 & 1 \end{vmatrix}, \quad \gamma = \begin{vmatrix} A_x & B_x & p_x \\ A_y & B_y & p_y \\ 1 & 1 & 1 \end{vmatrix}
\]

Computing the determinant of the denominator gives:

\[
B_x C_y - B_y C_x + A_y C_x - A_x C_y + A_x B_y - A_y B_x
\]
Cross products

Consider the cross-product of two vectors, \(\mathbf{u} \) and \(\mathbf{v} \). What is the geometric interpretation of this cross-product?

A cross-product can be computed as:

\[
\mathbf{u} \times \mathbf{v} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_x & u_y & u_z \\
v_x & v_y & v_z
\end{vmatrix}
\]

\[
= (u_y v_z - u_z v_y) \mathbf{i} + (u_z v_x - u_x v_z) \mathbf{j} + (u_x v_y - u_y v_x) \mathbf{k}
\]

What happens when \(\mathbf{u} \) and \(\mathbf{v} \) lie in the \(x-y \) plane? What is the area of the triangle they span?
Barycentric coords from area ratios

Now, let’s rearrange the equation from two slides ago:

\[
B_x C_y - B_y C_x + A_y C_x - A_x C_y + A_x B_y - A_y B_x
= (B_x - A_x)(C_y - A_y) - (B_y - A_y)(C_x - A_x)
\]

The determinant is then just the \(z \)-component of (B-A) \(\times \) (C-A), which is two times the area of triangle \(ABC \)!

Thus, we find:

\[
\alpha = \frac{\text{SArea}(pBC)}{\text{SArea}(ABC)} \quad \beta = \frac{\text{SArea}(ApC)}{\text{SArea}(ABC)} \quad \gamma = \frac{\text{SArea}(ABp)}{\text{SArea}(ABC)}
\]

Where \(\text{SArea}(RST) \) is the signed area of a triangle, which can be computed with cross-products.
Ray-triangle intersection

- Solution 2: project down a dimension and compute barycentric coordinates from 2D points.

- Why is solution 2 possible? Why is it legal? Why is it desirable? Which axis should you “project away”?
Interpolating vertex properties

- The barycentric coordinates can also be used to interpolate vertex properties such as:
 - material properties
 - texture coordinates
 - normals
- For example:
 \[k_d(Q) = \alpha k_d(A) + \beta k_d(B) + \gamma k_d(C) \]
- Interpolating normals, known as Phong interpolation, gives triangle meshes a smooth shading appearance. (Note: don’t forget to normalize interpolated normals.)
Epsilons

- Due to finite precision arithmetic, we do not always get the exact intersection at a surface.
- **Q:** What kinds of problems might this cause?

- **Q:** How might we resolve this?
Intersecting with xformed geometry

- In general, objects will be placed using transformations. What if the object being intersected were transformed by a matrix \(M \)?

- Apply \(M^{-1} \) to the ray first and intersect in object (local) coordinates!
The intersected normal is in object (local) coordinates. How do we transform it to world coordinates?