Viewing and Modeling

Don Fussell
Computer Science Department
The University of Texas at Austin
A Simplified Graphics Pipeline

Application

Vertex batching & assembly

Triangle assembly

Triangle clipping

NDC to window space

Triangle rasterization

Fragment shading

Depth testing

Color update

Framebuffer

Depth buffer

NDC to window space

University of Texas at Austin CS354 - Computer Graphics Don Fussell
A few more steps expanded

Application

Vertex batching & assembly

Vertex transformation → Lighting → Texture coordinate generation → Triangle assembly

User defined clipping → View frustum clipping → Perspective divide

NDC to window space

Back face culling → Triangle rasterization

Fragment shading

Depth testing → Depth buffer

Color update → Framebuffer
Conceptual Vertex Transformation

```
[glVertex* API commands] → [object-space coordinates: (x_o, y_o, z_o, w_o)] → [Modelview matrix] → [eye-space coordinates: (x_e, y_e, z_e, w_e)]:

- User-defined clip planes

  - clipped eye-space coordinates: (x_e, y_e, z_e, w_e)

Projection matrix → [clip-space coordinates: (x_c, y_c, z_c, w_c)] → [View-frustum clip planes]

View-port + Depth Range transformation → [window-space coordinates: (x_w, y_w, z_w, 1/w_c)] → [to primitive rasterization]

- normalized device coordinates (NDC): (x_n, y_n, z_n, 1/w_c)

Perspective division

- clipped clip-space coordinates: (x_c, y_c, z_c, w_c)
```
Pipeline View

modelview transformation → projection transformation → clipping

nonsingular

perspective division → projection

4D → 3D → 2D

homogeneous for perspective
Computer Viewing

There are three aspects of the viewing process, all of which are implemented in the pipeline,

- Positioning the camera
 - Setting the model-view matrix
- Selecting a lens
 - Setting the projection matrix
- Clipping
 - Setting the view volume
The World and Camera Frames

- When we work with representations, we work with n-tuples or arrays of scalars.
- Changes in frame are then defined by 4 x 4 matrices.
- In OpenGL, the base frame that we start with is the world frame.
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix.
- Initially these frames are the same (M=I).
Object-space vertex position transformed by a general linear projective transformation

Expressed as a 4x4 matrix

\[
\begin{bmatrix}
 x_c \\
y_c \\
z_c \\
w_c
\end{bmatrix} =
\begin{bmatrix}
m_0 & m_4 & m_8 & m_{12} \\
m_1 & m_5 & m_9 & m_{13} \\
m_2 & m_6 & m_{10} & m_{14} \\
m_3 & m_7 & m_{11} & m_{15}
\end{bmatrix}
\begin{bmatrix}
x_o \\
y_o \\
z_o \\
w_o
\end{bmatrix}
\]
The OpenGL Camera

- In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction
- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity
Moving the Camera

If objects are on both sides of $z=0$, we must move camera frame

$$
M = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
$$
Moving the Camera Frame

- If we want to visualize objects with both positive and negative z values, we can either:
 - Move the camera in the positive z direction
 - Translate the camera frame
 - Move the objects in the negative z direction
 - Translate the world frame

- Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation (`glTranslatef(0.0,0.0,-d);`)
 - $d > 0$
Translate Transform

Prototype

\[\text{glTranslatef(GLfloat } x, \text{ GLfloat } y, \text{ GLfloat } z) \]

Post-concatenates this matrix

\[
\begin{bmatrix}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
glTranslatef Matrix

- Modelview specification
 - glLoadIdentity();
 - glTranslatef(0,0,-14)
 - x translate=0, y translate=0, z translate=-14
 - Point at (0,0,0) would move to (0,0,-14)
 - Down the negative Z axis

- Matrix

\[
\begin{bmatrix}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

the translation vector
General Camera Motion

- We can move the camera to any desired position by a sequence of rotations and translations
- Example: side view
 - Rotate the camera
 - Move it away from origin
 - Model-view matrix $C = TR$
OpenGL code

- Remember that last transformation specified is first to be applied

```c
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -d);
glRotatef(90.0, 0.0, 1.0, 0.0);
```
A Better Viewing Matrix

“Look at” Transform

Concept

- Given the following
 - a 3D world-space “eye” position
 - a 3D world-space center of view position (looking “at”), and
 - an 3D world-space “up” vector

- Then an affine (non-projective) 4x4 matrix can be constructed
 - For a view transform mapping world-space to eye-space

A ready implementation

- The OpenGL Utility library (GLU) provides it
 - gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,
 GLdouble atx, GLdouble atz, GLdouble atz,
 GLdouble upx, GLdouble upy, GLdouble upz);
gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)
“Look At” in Practice

- Consider our prior view situation
 - Instead of an arbitrary view…
 - …we just translated by 14 in negative Z direction
 - \(\text{glTranslatef}(0,0,14) \)
- What this means in “Look At” parameters
 - \((\text{eyex}, \text{eyey}, \text{eyez}) = (0,0,14)\)
 - \((\text{atx}, \text{aty}, \text{atz}) = (0,0,0)\)
 - \((\text{upx}, \text{upy}, \text{upz}) = (0,1,0)\)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Same matrix; same transform

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Not surprising both are “just translates in Z” since the “Look At” parameters already have use looking down the negative Z axis
The “Look At” Algorithm

- Vector math
 - $Z = \text{eye} - \text{at}$
 - $Z = \text{normalize}(Z)$ /* normalize means $Z / \text{length}(Z)$ */
 - $Y = \text{up}$
 - $X = Y \times Z$ /* × means vector cross product! */
 - $Y = Z \times X$ /* orthogonalize */
 - $X = \text{normalize}(X)$
 - $Y = \text{normalize}(Y)$

- Then build the following affine 4x4 matrix

\[
\begin{bmatrix}
X_x & X_y & X_z & -X \cdot \text{eye} \\
Y_x & Y_y & Y_z & -Y \cdot \text{eye} \\
Z_x & Z_y & Z_z & -Z \cdot \text{eye} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Warning: Algorithm is prone to failure if normalize divides by zero (or very nearly does)

So

1. Don’t let Z or up be zero length vectors
2. Don’t let Z and up be coincident vectors
“Look At” Examples

```
# gluLookAt(0,0,14,  // eye (x,y,z)
    0,0,0,      // at (x,y,z)
    0,1,0);     // up (x,y,z)
```

Same as the glTranslatef(0,0,-14) as expected

```
# gluLookAt(1,2.5,11,  // eye (x,y,z)
    0,0,0,      // at (x,y,z)
    0,1,0);     // up (x,y,z)
```

Similar to original, but just a little off angle due to slightly perturbed eye vector
“Look At” Major Eye Changes

\[
\text{gluLookAt}(-2.5, 11, 1, 0, 0, 0, 0, 1, 0); \quad // \text{eye (x,y,z)} \\
\text{at (x,y,z)} \\
\text{up (x,y,z)}
\]

Eye is “above” the scene

\[
\text{gluLookAt}(-2.5, -11, 1, 0, 0, 0, 0, 1, 0); \quad // \text{eye (x,y,z)} \\
\text{at (x,y,z)} \\
\text{up (x,y,z)}
\]

Eye is “below” the scene
“Look At” Changes to AT and UP

\[
gluLookAt(0, 0, 14, 2, -3, 0, 0, 1, 0); \quad // \text{eye (x,y,z)} \quad // \text{at (x,y,z)} \quad // \text{up (x,y,z)}
\]

Original eye position, but “at” position shifted

\[
gluLookAt(0, 0, 14, 0, 0, 0, 1, 1, 0); \quad // \text{eye (x,y,z)} \quad // \text{at (x,y,z)} \quad // \text{up (x,y,z)}
\]

Eye is “below” the scene
The GLU library contains the function `gluLookAt` to form the required modelview matrix through a simple interface.

- Note the need for setting an up direction
- Still need to initialize
- Can concatenate with modeling transformations
- Example: isometric view of cube aligned with axes

```c
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0., 1.0, 0.0);
```
Other Viewing APIs

- The LookAt function is only one possible API for positioning the camera
- Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles
Two Transforms in Sequence

- OpenGL thinks of the projective transform as really two 4x4 matrix transforms

FIRST

| \(\begin{bmatrix} x_e \\ y_e \\ z_e \\ w_e \end{bmatrix} \) |
| \(\begin{bmatrix} MV_0 & MV_4 & MV_8 & MV_{12} \\ MV_1 & MV_5 & MV_9 & MV_{13} \\ MV_2 & MV_6 & MV_{10} & MV_{14} \\ MV_3 & MV_7 & MV_{11} & MV_{15} \end{bmatrix} \) |
| \(\begin{bmatrix} x_o \\ y_o \\ z_o \\ w_o \end{bmatrix} \) |

16 Multiply-Add operations

SECOND

| \(\begin{bmatrix} x_c \\ y_c \\ z_c \\ w_c \end{bmatrix} \) |
| \(\begin{bmatrix} P_0 & P_4 & P_8 & P_{12} \\ P_1 & P_5 & P_9 & P_{13} \\ P_2 & P_6 & P_{10} & P_{14} \\ P_3 & P_7 & P_{11} & P_{15} \end{bmatrix} \) |
| \(\begin{bmatrix} x_e \\ y_e \\ z_e \\ w_e \end{bmatrix} \) |

Another
16 Multiply-Add operations
Modelview-Projection Transform

- Matrixes can associate (combine)
- Combination of the modelview and projection matrix = modelview-projection matrix
- or often simply the “MVP” matrix

\[
\begin{bmatrix}
MVP_0 & MVP_4 & MVP_8 & MVP_{12} \\
MVP_1 & MVP_5 & MVP_9 & MVP_{13} \\
MVP_2 & MVP_6 & MVP_{10} & MVP_{14} \\
MVP_3 & MVP_7 & MVP_{11} & MVP_{15}
\end{bmatrix}
=
\begin{bmatrix}
P_0 & P_4 & P_8 & P_{12} \\
P_1 & P_5 & P_9 & P_{13} \\
P_2 & P_6 & P_{10} & P_{14} \\
P_3 & P_7 & P_{11} & P_{15}
\end{bmatrix}
\begin{bmatrix}
MV_0 & MV_4 & MV_8 & MV_{12} \\
MV_1 & MV_5 & MV_9 & MV_{13} \\
MV_2 & MV_6 & MV_{10} & MV_{14} \\
MV_3 & MV_7 & MV_{11} & MV_{15}
\end{bmatrix}
\]

Matrix multiplication is **associative** (but not commutative)
A(BC) = (AB)C, but ABC ≠ CBA

concatenation is 64 Multiply-Add operations, done by OpenGL driver
Specifying the Transforms

- Specified in two parts
- First the projection
 - `glMatrixMode(GL_PROJECTION);`
 - `glLoadIdentity();`
 - `glFrustum(-4, +4, -3, +3, 5, 80);` // left & right, top & bottom, near & far

- Second the model-view
 - `glMatrixMode(GL_MODELVIEW);`
 - `glLoadIdentity();`
 - `glTranslatef(0, 0, -14);`
 - So objects centered at (0,0,0) would be at (0,0,-14) in eye-space

Resulting projection matrix

\[
\begin{bmatrix}
1.25 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 \\
0 & 0 & -1.133 & -10.667 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

Resulting modelview matrix

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Modelview-Projection Matrix

Transform composition via matrix multiplication

\[
\begin{bmatrix}
1.25 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 \\
0 & 0 & -1.1333 & -10.667 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1.25 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 \\
0 & 0 & -1.1333 & 5.2 \\
0 & 0 & -1 & 14 \\
\end{bmatrix}
\]

Resulting modelview-projection matrix
Now Draw Some Objects

- Draw a wireframe cube
 - `glColor3f(1,0,0); // red`
 - `glutWireCube(6);`
 - 6x6x6 unit cube centered at origin (0,0,0)

- Draw a teapot in the cube
 - `glColor3f(0,0,1); // blue`
 - `glutSolidTeapot(2.0);`
 - centered at the origin (0,0,0)
 - handle and spout point down the X axis
 - top and bottom in the Y axis

- *As we’d expect given a frustum transform, the cube is in perspective*
 - The teapot is too but more obvious to observe with a wireframe cube
What We’ve Accomplished

- Simple perspective
 - With `glFrustum`
 - Establishes how eye-space maps to clip-space

- Simple viewing
 - With `glTranslatef`
 - Establishes how world-space maps to eye-space
 - All we really did was “wheel” the camera 14 units up the Z axis
 - No actual “modeling transforms”, just viewing
 - Modeling would be rotating, scaling, or otherwise transform the objects with the view
 - Arguably the modelview matrix is really just a “view” matrix in this example

(0,0,14) (0,0,0)
Some Simple Modeling

- Try some modeling transforms to move teapot
- But leave the cube alone for reference

```c
glPushMatrix();
  glTranslatef(1.5, -0.5, 0);
  glutSolidTeapot(2.0);
glPopMatrix();

glPushMatrix();
  glScale(1.5, 1.0, 1.5);
  glutSolidTeapot(2.0);
glPopMatrix();

glPushMatrix();
  glRotatef(30, 1, 1, 1);
  glutSolidTeapot(2.0);
glPopMatrix();
```

We “bracket” the modeling transform with `glPushMatrix/glPopMatrix` commands so the modeling transforms are “localized” to the particular object.
Add Some Lighting

- Some lighting makes the modeling more intuitive

```c
glPushMatrix(); {
    glTranslatef(1.5, -0.5, 0);
    glutSolidTeapot(2.0);
} glPopMatrix();

glPushMatrix(); {
    glScalef(1.5, 1.0, 1.5);
    glutSolidTeapot(2.0);
} glPopMatrix();

glPushMatrix(); {
    glRotatef(30, 1, 1, 1);
    glutSolidTeapot(2.0);
} glPopMatrix();
```

We’ve not discussed lighting yet but per-vertex lighting allows a virtual light source to “interact” with the object’s surface orientation and material properties.
Let’s consider the “combined” modelview matrix with the rotation.

- `glRotate(30, 1,1,1)` defines a rotation matrix
- Rotating 30 degrees…
- …around an axis in the (1,1,1) direction

\[
\begin{bmatrix}
1.25 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 \\
0 & 0 & -1.133 & -10.667 \\
0 & 0 & -1 & 0 \\
\end{bmatrix}, \quad \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -14 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}, \quad \begin{bmatrix}
0.9107 & -0.2440 & 0.3333 & 0 \\
0.3333 & 0.9107 & -0.2440 & 0 \\
-0.2440 & 0.3333 & 0.9107 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Combining All Three

Matrix-by-matrix multiplication is associative so

\[
PVM = P (V M) = (P V) M
\]

OpenGL keeps V and M “together” because eye-space is a convenient space for lighting

\[
\begin{bmatrix}
1.25 & 0 & 0 & 0 \\
0 & 1.667 & 0 & 0 \\
0 & 0 & -1.1333 & -10.667 \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
0.9107 & -0.2440 & 0.3333 & 0 \\
0.3333 & 0.9107 & -0.2440 & 0 \\
-0.2440 & 0.3333 & 0.9107 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

projection

model

view

modelview

modelview-projection
Object- to Clip-space

\[
\begin{bmatrix}
 x_{\text{world}} \\
 y_{\text{world}} \\
 z_{\text{world}} \\
 w_{\text{world}}
\end{bmatrix}
= \begin{bmatrix}
 0.9107 & -0.2440 & 0.3333 & 0 \\
 0.3333 & 0.9107 & -0.2440 & 0 \\
 -0.2440 & 0.3333 & 0.9107 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x_{\text{object}} \\
 y_{\text{object}} \\
 z_{\text{object}} \\
 w_{\text{object}}
\end{bmatrix}
\]

Object-to-Clip-space

\[
\begin{bmatrix}
 x_{\text{eye}} \\
 y_{\text{eye}} \\
 z_{\text{eye}} \\
 w_{\text{eye}}
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & -14 \\
 0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
 x_{\text{world}} \\
 y_{\text{world}} \\
 z_{\text{world}} \\
 w_{\text{world}}
\end{bmatrix}
\]

Object-to-Eye-to-Clip

\[
\begin{bmatrix}
 x_{\text{clip}} \\
 y_{\text{clip}} \\
 z_{\text{clip}} \\
 w_{\text{clip}}
\end{bmatrix}
= \begin{bmatrix}
 1.25 & 0 & 0 & 0 \\
 0 & 1.667 & 0 & 0 \\
 0 & 0 & -1.1333 & -10.667 \\
 0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
 x_{\text{eye}} \\
 y_{\text{eye}} \\
 z_{\text{eye}} \\
 w_{\text{eye}}
\end{bmatrix}
\]

Object-to-Clip

\[
\begin{bmatrix}
 x_{\text{clip}} \\
 y_{\text{clip}} \\
 z_{\text{clip}} \\
 w_{\text{clip}}
\end{bmatrix}
= \begin{bmatrix}
 1.1384 & -0.3050 & 0.4167 & 0 \\
 0.5556 & 1.5178 & -0.4067 & 0 \\
 0.2766 & -0.3778 & -1.0321 & 5.2 \\
 0.2440 & -0.3333 & -0.9107 & 14
\end{bmatrix}
\begin{bmatrix}
 x_{\text{object}} \\
 y_{\text{object}} \\
 z_{\text{object}} \\
 w_{\text{object}}
\end{bmatrix}
\]

Object-to-Clip-space

University of Texas at Austin CS354 - Computer Graphics Don Fussell
Complex Scene Example

Each character, wall, ceiling, floor, and light have their own modeling transformation
Representing Objects

- Interested in object’s boundary
- Various approaches
 - Procedural representations
 - Often fractal
 - Explicit polygon (triangle) meshes
 - By far, the most popular method
 - Curved surface patches
 - Often displacement mapped
- Implicit representation
 - Blobby, volumetric

Fractal tree
Sierpinski gasket
Quake 2 key frame triangle meshes
Utah Teapot
Blobby modeling in RenderMan

University of Texas at Austin CS354 - Computer Graphics Don Fussell
Focus on Triangle Meshes

- Easiest approach to representing object boundaries
- So what is a mesh and how should it be stored?
 - Simplest view
 - A set of triangles, each with its “own” 3 vertices
 - Essentially “triangle soup”
 - Yet triangles in meshes share edges by design
 - Sharing edges implies sharing vertices
 - More sophisticated view
 - Store single set of unique vertexes in array
 - Then each primitive (triangle) specifies 3 indices into array of vertexes
 - More compact
 - Vertex data size >> index size
 - Avoids redundant vertex data
 - Separates “topology” (how the mesh is connected) from its “geometry” (vertex positions and attributes)
 - Connectivity can be deduced more easily
 - Makes mesh processing algorithms easier
 - Geometry data can change without altering the topology
Consider a Tetrahedron

- **Simplest closed volume**
- Consists of 4 triangles and 4 vertices
 - (and 4 edges)

```
\begin{align*}
\text{triangle list} & \quad \text{vertex list} \\
0: v0, v1, v2 & \quad 0: (x0, y0, z0) \\
1: v1, v3, v2 & \quad 1: (x1, y1, z1) \\
2: v3, v0, v2 & \quad 2: (x2, y2, z2) \\
3: v1, v0, v3 & \quad 3: (x3, y3, z3)
\end{align*}
```

\(v0 \) \((x0, y0, z1) \)
\(v1 \) \((x1, y1, z1) \)
\(v2 \) \((x2, y2, z2) \)
\(v3 \) \((x3, y3, z3) \)

topology

geometry

potentially on-GPU!
Benefits of Vertex Array Approach

- Unique vertices are stored once
 - Saves memory
 - On CPU, on disk, and on GPU
- Matches OpenGL vertex array model of operation
 - And this matches the efficient GPU mode of operation
 - The GPU can “cache” post-transformed vertex results by vertex index
 - Saves retransformation and redundant vertex fetching
 - Direct3D has the same model
- Allows vertex data to be stored on-GPU for even faster vertex processing
 - OpenGL supported vertex buffer objects for this
Next Lecture

- More about triangle mesh representation
- Scene graphs