
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

Physics for Games
Spring 2012

Game Physics – Basic Areas

!   Point Masses
! Particle simulation
! Collision response

!   Rigid-Bodies
! Extensions to non-points

!   Soft Body Dynamic Systems
!   Articulated Systems and Constraints
!   Collision Detection

Physics Engines

!   API for collision detection
!   API for kinematics (motion but no forces)
!   API for dynamics

!   Examples

! Box2d
! Bullet
! ODE (Open Dynamics Engine)
! PhysX
! Havok
! Etc.

University of Texas at Austin CS 378 – Game Technology Don Fussell 3

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 4

Particle dynamics and particle systems

!   A particle system is a collection of point masses that
obeys some physical laws (e.g, gravity, heat convection,
spring behaviors, …).

!   Particle systems can be used to simulate all sorts of
physical phenomena:

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 5

Particle in a flow field

!   We begin with a single particle with:

! Position,

! Velocity,

!   Suppose the velocity is actually dictated by some driving
function g:

g(x,t)

x

y

€

 x =
x
y
"

$
%

&
'

€

 v = x
•

=
d
 x
dt

=
dx dt
dy dt
"

$

%

&
'

€

x
•

= g(x ,t)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 6

Vector fields

!  At any moment in time, the function g defines a
vector field over x:

!  How does our particle move through the vector
field?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 7

Diff eqs and integral curves

!   The equation

 is actually a first order differential equation.
!   We can solve for x through time by starting at an initial

point and stepping along the vector field:

!   This is called an initial value problem and the solution is
called an integral curve.

Start Here

€

x
•

= g(x ,t)

Eulers method

!   One simple approach is to choose a time step, Δt, and take linear steps
along the flow:

!   Writing as a time iteration:

!   This approach is called Euler’s method and looks like:

!   Properties:
! Simplest numerical method
! Bigger steps, bigger errors. Error ~ O(Δt2).

!   Need to take pretty small steps, so not very efficient. Better (more
complicated) methods exist, e.g., “Runge-Kutta” and “implicit
integration.”

€

 x i+1 =

x i + Δ t ⋅

 v i

€

 x (t + Δ t) =
 x (t) + Δ t ⋅ x(t) =

 x (t) + Δ t ⋅ g(x ,t)
€

•

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 9

Particle in a force field

!   Now consider a particle in a force field f.
!   In this case, the particle has:

! Mass, m
! Acceleration,

!   The particle obeys Newton’s law:

!   The force field f can in general depend on the position and
velocity of the particle as well as time.

!   Thus, with some rearrangement, we end up with:

€

 a ≡ x =
d v
dt

=
d2 x
dt 2

€

••

€

f = m a = mx

€

••

€

x =

f (x ,x,t)
m

€

••

€

•

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 10

This equation:

is a second order differential equation.

Our solution method, though, worked on first order differential equations.

We can rewrite this as:

where we have added a new variable v to get a pair of coupled first order
equations.

Second order equations

€

x =
 v

v =

f (x , v ,t)
m

"

$
$

%

&

'
'

€

•

€

•

€

x =

f (x ,x,t)
m

€

••

€

•

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 11

Phase space

!  Concatenate x and v to make a 6-
vector: position in phase space.

!  Taking the time derivative: another
6-vector.

!  A vanilla 1st-order differential
equation. €

x
v
"

$
%

&
'

€

•

€

•

€

 x
 v
"

$
%

&
'

€

x
v
"

$
%

&
' =

 v

f m
"

$

%

&
'

€

•
€

•

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 12

Differential equation solver

Applying Euler’s method:

Again, performs poorly for large Δt.

And making substitutions:

Writing this as an iteration, we have:

Starting with:

€

x
v
"

$
%

&
' =

 v

f m
"

$

%

&
'

€

•
€

•

€

 x (t + Δ t) =
 x (t) + Δ t ⋅ x(t)

€

•

€

x(t + Δ t) = x(t) + Δ t ⋅ x(t)
€

•

€

•

€

••

€

 x (t + Δ t) =
 x (t) + Δ t ⋅ v (t)

€

•

€

x(t + Δ t) = x(t) + Δ t ⋅

f (x ,x,t) m

€

•

€

•

€

 x i+1 =

x i + Δ t ⋅

 v i

€

 v i+1 =
 v i + Δ t ⋅

f i

m

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 13

Particle structure

m

! "
$
$
$
$
% &

x
v
f

position
velocity
force accumulator
mass

Position in phase space

How do we represent a particle?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 14

Single particle solver interface

m

! "
$
$
$
$
% &

x
v
f ! "

$
% &

x
v

/m
! "
$
% &

v
f

[]6getDim

derivEval

getState

setState

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 15

Particle systems

particles n time

In general, we have a particle system consisting of n particles to
be managed over time:

€

 x 1 v 1
f 1
m1

"

$
$
$
$

%

&

'
'
'
'

 x 2 v 2
f 2
m2

"

$
$
$
$

%

&

'
'
'
'

…

 x n v n
f n
mn

"

$
$
$
$

%

&

'
'
'
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 16

Particle system solver interface

derivEval

get/setState getDim

For n particles, the solver interface now looks like:

particles n time

€

6n
 x 1
 v 1
 x 2
 v 2 …

 x n
 v n

 v 1

f 1
m1

 v 2

f 2
m2

…
 v n

f n
mn

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 17

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the
Euler method:

€

 x 1
i+1

 v 1
i+1

 x n
i+1

 v n
i+1

"

$
$
$
$
$
$

%

&

'
'
'
'
'
'

=

 x 1
i

 v 1
i

 x n
i

 v n
i

"

$
$
$
$
$
$

%

&

'
'
'
'
'
'

+ Δt

 v 1
i

f 1
i m1

 v n
i

f n
i mn

"

$
$
$
$
$
$

%

&

'
'
'
'
'
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 18

Forces

!  Each particle can experience a force which sends
it on its merry way.

!  Where do these forces come from? Some
examples:
! Constant (gravity)
! Position/time dependent (force fields)
! Velocity-dependent (drag)
! Combinations (Damped springs)

!  How do we compute the net force on a particle?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 19

Particle systems with forces

particles n time forces

F2 Fnf

nf

!   Force objects are black boxes that point to the particles they influence
and add in their contributions.

!   We can now visualize the particle system with force objects:

F1

€

 x 1 v 1
f 1
m1

"

$
$
$
$

%

&

'
'
'
'

 x 2 v 2
f 2
m2

"

$
$
$
$

%

&

'
'
'
'

…

 x n v n
f n
mn

"

$
$
$
$

%

&

'
'
'
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 20

Gravity and viscous drag

p->f += p->m * F->G

p->f -= F->k * p->v

The force due to gravity is simply:

Often, we want to slow things down with viscous drag:

€

f grav = m

G

€

f drag = −k v

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 21

Recall the equation for the force due to a spring:

We can augment this with damping:

The resulting force equations for a spring between two particles
become:

Damped spring

€

f = −kspring (Δ
 x − r)

€

f = − kspring (Δ
 x − r) + kdamp

 v []

€

f 1 = − kspring Δ

 x − r() + kdamp
Δ
 v •Δ x
Δ
 x

$

%
&

'

(
)

*

+
,
,

-

.
/
/

Δ
 x

Δ
 x

f 2 = −

f 1

r = rest length

€

p1 =

 x 1 v 1

"

$
%

&
'

€

p2 =

 x 2 v 2

"

$

%

&
'

€

Δ
 x = x 1 −

 x 2

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 22

derivEval
Clear forces

Loop over particles,
zero force
accumulators

Calculate forces
Sum all forces into
accumulators

Return derivatives
Loop over particles,
return v and f/m Apply forces

 to particles

Clear force
accumulators 1

2

3
Return derivatives

to solver

F2 F3 Fnf F1

€

 x 1 v 1
f 1
m1

"

$
$
$
$

%

&

'
'
'
'

 x 2 v 2
f 2
m2

"

$
$
$
$

%

&

'
'
'
'

…

 x n v n
f n
mn

"

$
$
$
$

%

&

'
'
'
'

€

 x 1 v 1
f 1
m1

"

$
$
$
$

%

&

'
'
'
'

 x 2 v 2
f 2
m2

"

$
$
$
$

%

&

'
'
'
'

…

 x n v n
f n
mn

"

$
$
$
$

%

&

'
'
'
'

€

 v 1
f 1 m1

"

$

%

&
'

 v 2
f 2 m2

"

$

%

&
' …

 v n
f n mn

"

$

%

&
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 23

Bouncing off the walls

! Add-on for a particle simulator
! For now, just simple point-plane

collisions

N P

A plane is fully specified by any point P on the plane and its normal N.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 24

Collision Detection

N

v

P

x

How do you decide when you’ve crossed a plane?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 25

Normal and tangential velocity

N

v

P

Nv

v Tv

To compute the collision response, we need to consider the
normal and tangential components of a particle’s velocity.

€

 v N =

N • v ()

N

 v T =
 v − v N

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 26

Collision Response

before after

Without backtracking, the response may not be enough to bring a
particle to the other side of a wall.
In that case, detection should include a velocity check:

€

 v N

€

 v T

€

 v T

€

" v =
 v T − krestitution

 v N

€

−krestitution
 v N

€

" v

€

 v

