CS 378: Computer Game Technology

Physics for Games Spring 2012

Game Physics - Basic Areas

■ Point Masses

- Particle simulation
- Collision response
- Rigid-Bodies
- Extensions to non-points
- Soft Body Dynamic Systems
- Articulated Systems and Constraints
- Collision Detection

Physics Engines

- API for collision detection
- API for kinematics (motion but no forces)
- API for dynamics
- Examples
- Box2d
- Bullet
- ODE (Open Dynamics Engine)
- PhysX
- Havok
- Etc.

Particle dynamics and particle systems

- A particle system is a collection of point masses that obeys some physical laws (e.g, gravity, heat convection, spring behaviors, ...).
- Particle systems can be used to simulate all sorts of physical phenomena:

Particle in a flow field

- We begin with a single particle with:
- Position, $\quad \overrightarrow{\mathbf{x}}=\left[\begin{array}{l}x \\ y\end{array}\right]$
- Velocity, $\overrightarrow{\mathbf{v}}=\dot{\mathbf{x}}=\frac{d \overrightarrow{\mathbf{x}}}{d t}=\left[\begin{array}{l}d x / d t \\ d y / d t\end{array}\right]$

- Suppose the velocity is actually dictated by some driving function \mathbf{g} :

$$
\mathbf{x}=\mathrm{g}(\overrightarrow{\mathbf{x}}, t)
$$

Vector fields

- At any moment in time, the function \mathbf{g} defines a vector field over \mathbf{x} :

- How does our particle move through the vector field?

Diff eqs and integral curves

- The equation

$$
\mathbf{x}=g(\overrightarrow{\mathbf{x}}, t)
$$

is actually a first order differential equation.

- We can solve for \mathbf{x} through time by starting at an initial point and stepping along the vector field:

- This is called an initial value problem and the solution is called an integral curve.

Eulers method

- One simple approach is to choose a time step, Δt, and take linear steps along the flow:

$$
\overrightarrow{\mathbf{x}}(t+\Delta t)=\overrightarrow{\mathbf{x}}(t)+\Delta t \cdot \dot{\mathbf{x}}(t)=\overrightarrow{\mathbf{x}}(t)+\Delta t \cdot g(\overrightarrow{\mathbf{x}}, t)
$$

- Writing as a time iteration:

$$
\overrightarrow{\mathbf{x}}^{i+1}=\vec{x}^{i}+\Delta t \cdot \overrightarrow{\mathbf{v}}^{i}
$$

- This approach is called Euler's method and looks like:
- Properties:
- Simplest numerical method
- Bigger steps, bigger errors. Error $\sim \mathrm{O}\left(\Delta t^{2}\right)$.

- Need to take pretty small steps, so not very efficient. Better (more complicated) methods exist, e.g., "Runge-Kutta" and "implicit integration."

Particle in a force field

- Now consider a particle in a force field \mathbf{f}.
- In this case, the particle has:
- Mass, m
- Acceleration, $\overrightarrow{\mathbf{a}} \equiv \ddot{\mathbf{x}}=\frac{d \overrightarrow{\mathbf{v}}}{d t}=\frac{d^{2} \overrightarrow{\mathbf{x}}}{d t^{2}}$
- The particle obeys Newton's law: $\overrightarrow{\mathbf{f}}=m \overrightarrow{\mathbf{a}}=m \ddot{\mathbf{x}}$
- The force field \mathbf{f} can in general depend on the position and velocity of the particle as well as time.
- Thus, with some rearrangement, we end up with:

$$
\ddot{\mathbf{x}}=\frac{\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}}, \dot{\mathbf{x}}, t)}{m}
$$

Second order equations

This equation:

$$
\ddot{\mathbf{x}}=\frac{\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}}, \dot{\mathbf{x}}, t)}{m}
$$

is a second order differential equation.
Our solution method, though, worked on first order differential equations.
We can rewrite this as:

$$
\left[\begin{array}{c}
\dot{\mathbf{x}}=\overrightarrow{\mathbf{v}} \\
\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{v}}, t) \\
m
\end{array}\right]
$$

where we have added a new variable \mathbf{v} to get a pair of coupled first order equations.

Phase space

$$
\begin{array}{ll}
{\left[\begin{array}{l}
\stackrel{\mathbf{x}}{\mathbf{\mathbf { v }}}
\end{array}\right]} & \begin{array}{l}
\text { Concatenate } \mathbf{x} \text { and } \mathbf{v} \text { to make a 6- } \\
\text { vector: position in phase space. }
\end{array} \\
& \left.\begin{array}{l}
\dot{\mathbf{x}} \\
\dot{\mathbf{v}}
\end{array}\right]
\end{array} \quad \begin{aligned}
& \text { Taking the time derivative: another } \\
& 6 \text {-vector. }
\end{aligned}
$$

Differential equation solver

Starting with:

$$
\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\dot{\mathbf{v}}
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{\mathbf{v}} \\
\overrightarrow{\mathbf{f}} / m
\end{array}\right]
$$

Applying Euler's method:

$$
\begin{aligned}
\overrightarrow{\mathbf{x}}(t+\Delta t) & =\overrightarrow{\mathbf{x}}(t)+\Delta t \cdot \dot{\mathbf{x}}(t) \\
\dot{\mathbf{x}}(t+\Delta t) & =\dot{\mathbf{x}}(t)+\Delta t \cdot \ddot{\mathbf{x}}(t)
\end{aligned}
$$

And making substitutions:

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}(t+\Delta t)=\overrightarrow{\mathbf{x}}(t)+\Delta t \cdot \overrightarrow{\mathbf{v}}(t) \\
& \dot{\mathbf{x}}(t+\Delta t)=\dot{\mathbf{x}}(t)+\Delta t \cdot \overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}}, \dot{\mathbf{x}}, t) / m
\end{aligned}
$$

Writing this as an iteration, we have:

$$
\begin{aligned}
& \overrightarrow{\mathbf{x}}^{i+1}=\vec{x}^{i}+\Delta t \cdot \overrightarrow{\mathbf{v}}^{i} \\
& \overrightarrow{\mathbf{v}}^{i+1}=\overrightarrow{\mathbf{v}}^{i}+\Delta t \cdot \frac{\overrightarrow{\mathbf{f}}^{i}}{m}
\end{aligned}
$$

Again, performs poorly for large Δt.

Particle structure

How do we represent a particle?

Single particle solver interface

Particle systems

In general, we have a particle system consisting of n particles to be managed over time:

Particle system solver interface

For n particles, the solver interface now looks like:

Particle system diff. eq. solver

We can solve the evolution of a particle system again using the Euler method:

$$
\left[\begin{array}{c}
\overrightarrow{\mathbf{x}}_{1}^{i+1} \\
\overrightarrow{\mathbf{v}}_{1}^{i+1} \\
\vdots \\
\overrightarrow{\mathbf{x}}_{n}^{i+1} \\
\overrightarrow{\mathbf{v}}_{n}^{i+1}
\end{array}\right]=\left[\begin{array}{c}
\overrightarrow{\mathbf{x}}_{1}^{i} \\
\overrightarrow{\mathbf{v}}_{1}^{i} \\
\vdots \\
\vdots \\
\overrightarrow{\mathbf{x}}_{n}^{i} \\
\overrightarrow{\mathbf{v}}_{n}^{i}
\end{array}\right]+\Delta t\left[\begin{array}{c}
\overrightarrow{\mathbf{v}}_{1}^{i} \\
\overrightarrow{\mathbf{f}}_{1}^{i} / m_{1} \\
\vdots \\
\overrightarrow{\mathbf{v}}_{n}^{i} \\
\overrightarrow{\mathbf{f}}_{n}^{i} / m_{n}
\end{array}\right]
$$

Forces

- Each particle can experience a force which sends it on its merry way.
- Where do these forces come from? Some examples:
- Constant (gravity)

■ Position/time dependent (force fields)

- Velocity-dependent (drag)

■ Combinations (Damped springs)

■ How do we compute the net force on a particle?

Particle systems with forces

- Force objects are black boxes that point to the particles they influence and add in their contributions.
- We can now visualize the particle system with force objects:

Gravity and viscous drag

The force due to gravity is simply:

$$
\begin{gathered}
\overrightarrow{\mathbf{f}}_{g r a v}=m \overrightarrow{\mathbf{G}} \\
\mathrm{p}->\mathbf{f}+=\mathrm{p}->\mathrm{m} * \mathbf{F}->\mathbf{G}
\end{gathered}
$$

Often, we want to slow things down with viscous drag:

$$
\begin{gathered}
\overrightarrow{\mathbf{f}}_{\text {drag }}=-k \overrightarrow{\mathbf{v}} \\
\mathrm{p}->\mathbf{f}-=\mathrm{F}->\mathbf{k} \text { * } \mathrm{p}->\mathbf{v}
\end{gathered}
$$

Damped spring

Recall the equation for the force due to a spring: $f=-k_{\text {spring }}(|\Delta \overrightarrow{\mathbf{x}}|-r)$
We can augment this with damping: $f=-\left[k_{\text {spring }}(|\Delta \overrightarrow{\mathbf{x}}|-r)+k_{\text {damp }}|\overrightarrow{\mathbf{v}}|\right]$
The resulting force equations for a spring between two particles become:

$$
\begin{aligned}
& \overrightarrow{\mathbf{f}}_{\mathbf{1}}=-\left[k_{\text {spring }}(|\Delta \overrightarrow{\mathbf{x}}|-r)+k_{\text {damp }}\left(\frac{\Delta \overrightarrow{\mathbf{v}} \cdot \Delta \overrightarrow{\mathbf{x}}}{|\Delta \overrightarrow{\mathbf{x}}|}\right)\right] \frac{\Delta \overrightarrow{\mathbf{x}}}{|\Delta \overrightarrow{\mathbf{x}}|} \\
& \overrightarrow{\mathbf{f}}_{2}=-\overrightarrow{\mathbf{f}}_{1} \\
& r=\text { rest length }
\end{aligned}
$$

derivEval

Clear forces
Loop over particles, zero force accumulators
Calculate forces
Sum all forces into accumulators
Return derivatives
Loop over particles, return \mathbf{v} and \mathbf{f} / m

$$
\left[\begin{array}{c}
\overrightarrow{\mathbf{v}}_{1} \\
\overrightarrow{\mathbf{f}}_{1} / m_{1}
\end{array}\right]\left[\begin{array}{c}
\overrightarrow{\mathbf{v}}_{2} \\
\overrightarrow{\mathbf{f}}_{2} / m_{2}
\end{array}\right] \cdots\left[\begin{array}{c}
\overrightarrow{\mathbf{v}}_{n} \\
\overrightarrow{\mathbf{f}}_{n} / m_{n}
\end{array}\right]
$$

Return derivatives
to solver

Bouncing off the walls

- Add-on for a particle simulator
- For now, just simple point-plane collisions

A plane is fully specified by any point \mathbf{P} on the plane and its normal \mathbf{N}.

Collision Detection

How do you decide when you' ve crossed a plane?

Normal and tangential velocity

To compute the collision response, we need to consider the normal and tangential components of a particle's velocity.

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}_{\mathrm{N}}=(\overrightarrow{\mathbf{N}} \bullet \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{N}} \\
& \overrightarrow{\mathbf{v}}_{\mathrm{T}}=\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{v}}_{\mathrm{N}}
\end{aligned}
$$

Collision Response

Without backtracking, the response may not be enough to bring a particle to the other side of a wall.
In that case, detection should include a velocity check:

