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Game Physics – Basic Areas 

!   Point Masses 
! Particle simulation 
! Collision response 

!   Rigid-Bodies 
! Extensions to non-points 

!   Soft Body Dynamic Systems 
!   Articulated Systems and Constraints 
!   Collision Detection 



Physics Engines 

!   API for collision detection 
!   API for kinematics (motion but no forces) 
!   API for dynamics 
 
!   Examples 

! Box2d 
! Bullet 
! ODE (Open Dynamics Engine) 
! PhysX 
! Havok 
! Etc. 
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Particle dynamics and particle systems 

!   A particle system is a collection of point masses that 
obeys some physical laws (e.g, gravity, heat convection, 
spring behaviors, …). 

!   Particle systems can be used to simulate all sorts of 
physical phenomena: 
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Particle in a flow field 

!   We begin with a single particle with: 

! Position,   

! Velocity,  
 

!   Suppose the velocity is actually dictated by some driving 
function g: 
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Vector fields 

!  At any moment in time, the function g defines a 
vector field over x: 

!  How does our particle move through the vector 
field? 
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Diff eqs and integral curves 

!   The equation  

 is actually a first order differential equation. 
!   We can solve for x through time by starting at an initial 

point and stepping along the vector field: 

 
 

!   This is called an initial value problem and the solution is 
called an integral curve. 

Start Here 
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Eulers method 

!   One simple approach is to choose a time step, Δt, and take linear steps 
along the flow: 

!   Writing as a time iteration: 

!   This approach is called Euler’s method and looks like: 

 
 

!   Properties: 
! Simplest numerical method 
! Bigger steps, bigger errors.  Error ~ O(Δt2). 

!   Need to take pretty small steps, so not very efficient.  Better (more 
complicated) methods exist, e.g., “Runge-Kutta” and “implicit 
integration.” 
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Particle in a force field 

!   Now consider a particle in a force field f. 
!   In this case, the particle has: 

! Mass,  m 
! Acceleration,  
 

!   The particle obeys Newton’s law:  

!   The force field f can in general depend on the position and 
velocity of the particle as well as time. 

!   Thus, with some rearrangement, we end up with: 
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This equation:  

 

 

is a second order differential equation. 

Our solution method, though, worked on first order differential equations. 

We can rewrite this as: 

 

 

where we have added a new variable v to get a pair of coupled first order 
equations.

Second order equations 
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Phase space 

!  Concatenate x and v to make a 6-
vector: position in phase space. 

!  Taking the time derivative: another 
6-vector. 

!  A vanilla 1st-order differential 
equation. € 
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Differential equation solver 

Applying Euler’s method: 

Again, performs poorly for large Δt. 

And making substitutions: 

Writing this as an iteration, we have: 

Starting with: 
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Particle structure 

m
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How do we represent a particle? 
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Single particle solver interface 
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Particle systems 

particles n time 

In general, we have a particle system consisting of n particles to 
be managed over time: 
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Particle system solver interface 

derivEval 

get/setState getDim 

For n particles, the solver interface now looks like: 

particles n time 
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Particle system diff. eq. solver 

We can solve the evolution of a particle system again using the 
Euler method: 

  

€ 

 x 1
i+1

 v 1
i+1


 x n
i+1

 v n
i+1

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

=

 x 1
i

 v 1
i


 x n
i

 v n
i

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

+ Δt

 v 1
i

 
f 1
i m1

 v n
i

 
f n
i mn

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2010  Don Fussell                 18 

Forces 

!  Each particle can experience a force which sends 
it on its merry way. 

!  Where do these forces come from?  Some 
examples: 
! Constant (gravity) 
! Position/time dependent (force fields) 
! Velocity-dependent (drag) 
! Combinations (Damped springs) 
 

!  How do we compute the net force on a particle? 
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Particle systems with forces 

particles n time forces 

F2 Fnf 

nf 

!   Force objects are black boxes that point to the particles they influence 
and add in their contributions.  

!   We can now visualize the particle system with force objects: 

F1 
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Gravity and viscous drag 

p->f += p->m * F->G 

p->f -= F->k * p->v 

The force due to gravity is simply: 

Often, we want to slow things down with viscous drag: 
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Recall the equation for the force due to a spring: 
 
We can augment this with damping: 
 
The resulting force equations for a spring between two particles 
become: 

Damped spring 
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derivEval 
Clear forces 

Loop over particles, 
zero force 
accumulators 

Calculate forces 
Sum all forces into 
accumulators 

Return derivatives 
Loop over particles, 
return v and f/m Apply forces 

 to particles 
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Bouncing off the walls 

! Add-on for a particle simulator 
! For now, just simple point-plane 

collisions 

N P 

A plane is fully specified by any point P on the plane and its normal N. 
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Collision Detection 

N 

v 

P 

x 

How do you decide when you’ve crossed a plane? 
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Normal and tangential velocity 

N 

v 

P 

Nv

v Tv

To compute the collision response,  we need to consider the 
normal and tangential components of a particle’s velocity. 
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Collision Response 

before after 

Without backtracking, the response may not be enough to bring a 
particle to the other side of a wall. 
In that case, detection should include a velocity check:
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