
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

Introduction to Game AI
Spring 2012

Today

!   AI
! Overview
! State Machines

What is AI?

!   AI is the control of every non-human entity in a game
! The other cars in a car game
! The opponents and monsters in a shooter
! Your units, your enemy’s units and your enemy in a RTS game

!   But, typically does not refer to passive things that just react
to the player and never initiate action
! That’s physics or game logic
! For example, the blocks in Tetris are not AI, nor is the ball in the

game you are doing, nor is a flag blowing in the wind
! It’s a somewhat arbitrary distinction

AI in the Game Loop

!   AI is updated as part of the game loop, after user input, and
before rendering

!   There are issues here:
! Which AI goes first?
! Does the AI run on every frame?
! Is the AI synchronized?

AI and Animation

!   AI determines what to do and the animation does it
! AI drives animation, deciding what action the animation system

should be animating
! Scenario 1: The AI issues orders like “move from A to B”, and

it’s up to the animation system to do the rest
! Scenario 2: The AI controls everything down to the animation clip

to play
!   Which scenario is best depends on the nature of the AI

system and the nature of the animation system
! Is the animation system based on move trees (motion capture), or

physics, or something else
! Does the AI look after collision avoidance? Does it do detailed

planning?

AI Module

AI Update Step

!   The sensing phase determines the state of
the world
! May be very simple - state changes all

come by message
! Or complex - figure out what is visible,

where your team is, etc
!   The thinking phase decides what to do

given the world
! The core of AI

!   The acting phase tells the animation what
to do
! Generally not interesting

Game
Engine

Sensing

Thinking

Acting

AI by Polling

!   The AI gets called at a fixed rate
!   Senses: It looks to see what has changed in the world. For

instance:
! Queries what it can see
! Checks to see if its animation has finished running

!   And then acts on it
!   Why is this generally inefficient?

Event Driven AI

!   Event driven AI does everything in response to events in
the world
! Events sent by message (basically, a function gets called when a

message arrives, just like a user interface)
!   Example messages:

! A certain amount of time has passed, so update yourself
! You have heard a sound
! Someone has entered your field of view

!   Note that messages can completely replace sensing, but
typically do not. Why not?
! Real system are a mix - something changes, so you do some

sensing

AI Techniques in Games

!   Basic problem: Given the state of the world, what should I
do?

!   A wide range of solutions in games:
! Finite state machines, Decision trees, Rule based systems, Neural

networks, Fuzzy logic

!   A wider range of solutions in the academic world:
! Complex planning systems, logic programming, genetic

algorithms, Bayes-nets
! Typically, too slow for games

Goals of Game AI

!   Several goals:
! Goal driven - the AI decides what it should do, and then figures

out how to do it
! Reactive - the AI responds immediately to changes in the world
! Knowledge intensive - the AI knows a lot about the world and how

it behaves, and embodies knowledge in its own behavior
! Characteristic - Embodies a believable, consistent character
! Fast and easy development
! Low CPU and memory usage

!   These conflict in almost every way

Two Measures of Complexity

!   Complexity of Execution
! How fast does it run as more knowledge is added?
! How much memory is required as more knowledge is added?
! Determines the run-time cost of the AI

!   Complexity of Specification
! How hard is it to write the code?
! As more “knowledge” is added, how much more code needs to be

added?
! Determines the development cost, and risk

Expressiveness

!   What behaviors can easily be defined, or defined at all?
!   Propositional logic:

! Statements about specific objects in the world – no variables
! Jim is in room7, Jim has the rocket launcher, the rocket launcher

does splash damage
! Go to room8 if you are in room7 through door14

!   Predicate Logic:
! Allows general statement – using variables
! All rooms have doors
! All splash damage weapons can be used around corners
! All rocket launchers do splash damage
! Go to a room connected to the current room

General References

!   As recommended by John Laird, academic game AI leader
and source of many of these slides

!   AI
! Russell and Norvig: Artificial Intelligence: A Modern Approach,

Prentice Hall, 1995
! Nilsson, Artificial Intelligence: A New Synthesis, Morgan

Kaufmann, 1998
!   AI and Computer Games

! LaMothe: Tricks of the Windows Game Programming Gurus,
SAMS, 1999, Chapter 12, pp. 713-796

! www.gameai.com
! www.gamedev.net

Finite State Machines (FSMs)

!   A set of states that the agent can be in
!   Connected by transitions that are triggered by a change in

the world
!   Normally represented as a directed graph, with the edges

labeled with the transition event
!   Ubiquitous in computer game AI
!   You might have seen them, a long time ago, in formal

language theory (or compilers)
! What type of languages can be represented by finite state

machines?
! How might this impact a character’s AI?
! How does it impact the size of the machine?

Quake Bot Example

!   Types of behavior to capture:
! Wander randomly if don’t see or hear an enemy
! When see enemy, attack
! When hear an enemy, chase enemy
! When die, respawn
! When health is low and see an enemy, retreat

!   Extensions:
! When see power-ups during wandering, collect them

!   Borrowed from John Laird and Mike van Lent’s GDC
tutorial

Example FSM
!   States:

! E: enemy in sight
! S: sound audible
! D: dead

!   Events:
! E: see an enemy
! S: hear a sound
! D: die

!   Action performed:
! On each transition
! On each update in some

states (e.g. attack)
Spawn
D

Wander
~E,~S,~D

~E

D

Attack
E,~D ~E

E

E

D

~S
Chase
S,~E,~D

E

S

S

D

Example FSM Problem
!   States:

! E: enemy in sight
! S: sound audible
! D: dead

!   Events:
! E: see an enemy
! S: hear a sound
! D: die

Spawn
D

Wander
~E,~S,~D

~E

D

Attack
E,~D ~E

E

E

D

~S
Chase
S,~E,~D

E

S

S

D

Problem: Can’t go directly
from attack to chase. Why not?

Better Example FSM
!   States:

! E: enemy in sight
! S: sound audible
! D: dead

!   Events:
! E: see an enemy
! S: hear a sound
! D: die

!   Extra state to recall
whether or not heard a
sound while attacking Spawn

D

Wander
~E,~S,~D

~E

D

Attack
E,~S,~D ~E

E

E

D

~S
Chase
S,~E,~D

S

S

D

E

Attack-S
E,S,~D

~E

~S

S

D

Example FSM with Retreat

Spawn
D
(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-S
Attack-E
E,-D,-S,-L

E

Chase
-E,-D,S,-L

S

D

S

D

D

Retreat-E
E,-D,-S,L

L

-E

Retreat-S
-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES
E,-D,S,L

Attack-ES
E,-D,S,-L

E

E
-E

-L

S
-S

L

-E E

L
-L

-L

-L

L

D

•  States:
–  E: enemy in sight
–  S: sound audible
–  D: dead
–  L: Low health

•  Worst case: Each
extra state
variable can add
2n extra states
•  n = number of

existing states

Hierarchical FSMs

!   What if there is no simple action for a state?
!   Expand a state into its own FSM, which explains what to

do if in that state
!   Some events move you around the same level in the

hierarchy, some move you up a level
!   When entering a state, have to choose a state for it’s child

in the hierarchy
! Set a default, and always go to that
! Or, random choice
! Depends on the nature of the behavior

Hierarchical FSM Example

!   Note: This is not a complete FSM
! All links between top level states

still exist
! Need more states for wander

Start
Turn Right

Go-through
Door

Pick-up
Powerup

Wander Attack

Chase

Spawn

~E

E
~S

S
D

~E

Non-Deterministic Hierarchical
FSM (Markov Model)

!   Adds variety to actions
!   Have multiple transitions for the

same event
!   Label each with a probability

that it will be taken
!   Randomly choose a transition at

run-time
!   Markov Model: New state only

depends on the previous state

Attack

Start

Approach

Aim &
Jump &
Shoot

Aim &
Slide Left
& Shoot

Aim &
Slide Right
& Shoot .3

.3
.4

.3
.3

.4

Efficient Implementation

!   Compile into an array of state-name, event
!   state-namei+1 := array[state-namei, event]
!   Switch on state-name to call execution logic
!   Hierarchical

! Create array for every FSM
! Have stack of states

!   Classify events according to stack
!   Update state which is sensitive to current

event

!   Markov: Have array of possible transitions
for every (state-name,event) pair, and
choose one at random

event

state

FSM Advantages

!   Very fast – one array access
!   Expressive enough for simple behaviors or characters that

are intended to be “dumb”
!   Can be compiled into compact data structure

! Dynamic memory: current state
! Static memory: state diagram – array implementation

!   Can create tools so non-programmer can build behavior
!   Non-deterministic FSM can make behavior unpredictable

FSM Disadvantages

!   Number of states can grow very fast
! Exponentially with number of events: s=2e

!   Number of arcs can grow even faster: a=s2

!   Propositional representation
! Difficult to put in “pick up the better powerup”, “attack the closest

enemy”
! Expensive to count: Wait until the third time I see enemy, then

attack
!  Need extra events: First time seen, second time seen, and extra states

to take care of counting

References

!  Web references:
! www.gamasutra.com/features/19970601/

build_brains_into_games.htm
! csr.uvic.ca/~mmania/machines/intro.htm
! www.erlang/se/documentation/doc-4.7.3/doc/design_principles/

fsm.html
! www.microconsultants.com/tips/fsm/fsmartcl.htm

!  Game Programming Gems Sections 3.0 & 3.1
! It’s very very detailed, but also some cute programming

