
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

Spatial Partitioning, Visibility and Culling
Spring 2012

Spatial Data Structures

!   Spatial data structures store data indexed in some way by
their spatial location
! For instance, store points according to their location, or polygons,

…
! Before graphics, used for queries like “Where is the nearest

hotel?” or “Which stars are strong enough to influence the sun?”

!   Multitude of uses in computer games
! Visibility - What can I see?
! Ray intersections - What did the player just shoot?
! Collision detection - Did the player just hit a wall?
! Proximity queries - Where is the nearest power-up?

Spatial Decompositions

!   Focus on spatial data structures that partition space into
regions, or cells, of some type
! Generally, cut up space with planes that separate regions
! Almost always based on tree structures (surprise, huh?)

!   Octrees (Quadtrees): Axis aligned, regularly spaced planes
cut space into cubes (squares)

!   Kd-trees: Axis aligned planes, in alternating directions, cut
space into rectilinear regions

!   BSP Trees: Arbitrarily aligned planes cut space into
convex regions

Using Decompositions

!   Many geometric queries are expensive to answer precisely
!   The best way to reduce the cost is with fast, approximate

queries that eliminate most objects quickly
! Trees with a containment property allow us to do this
! The cell of a parent completely contains all the cells of its children
! If a query fails for the cell, we know it will fail for all its children
! If the query succeeds, we try it for the children
! If we get to a leaf, we do the expensive query for things in the cell

!   Spatial decompositions are most frequently used in this way
! For example, if we cannot see any part of a cell, we cannot see its

children, if we see a leaf, use the Z-buffer to draw the contents

Octree

!   Root node represents a cube containing the entire world
!   Then, recursively, the eight children of each node represent

the eight sub-cubes of the parent
! Quadtree is for 2D decompositions - root is square and

four children are sub-squares
! What sorts of games might use quadtrees instead of octrees?

!   Objects can be assigned to nodes in one of two common
ways:
! All objects are in leaf nodes
! Each object is in the smallest node that fully contains it
! What are the benefits and problems with each approach?

Octree Node Data Structure

!   What needs to be stored in a node?
! Children pointers (at most eight)
! Parent pointer - useful for moving about the tree
! Extents of cube - can be inferred from tree structure, but easier to

just store it
! Data associated with the contents of the cube

!  Contents might be whole objects or individual polygons, or even
something else

! Neighbors are useful in some algorithms (but not all)

Building an Octree

!   Define a function, buildNode, that:
! Takes a node with its cube set and a list of its contents
! Creates the children nodes, divides the objects among the children,

and recurses on the children, or
! Sets the node to be a leaf node

!   Find the root cube (how?), create the root node and call
buildNode with all the objects

!   When do we choose to stop creating children?
! Is the tree necessarily balanced?

!   What is the hard part in all this? Hint: It depends on how
we store objects in the tree

Example Construction

Assignment of Objects to Cells

!   Basic operation is to intersect an object with a cell
! What can we exploit to make it faster for octrees?

!   Fast algorithm for polygons (Graphics Gems V):
! Test for trivial accept/reject with each cell face plane

!   Look at which side of which planes the polygon vertices lie
!  Note speedups: Vertices outside one plane must be inside the opposite plane

! Test for trivial reject with edge and vertex planes
!   Planes through edges/vertices with normals like (1,1,1) and (0,1,1)

! Test polygon edges against cell faces
! Test a particular cell diagonal for intersection with the polygon
! Information from one test informs the later tests. Code available online

Approximate Assignment

!   Recall, we typically use spatial decompositions to answer
approximate queries
! Conservative approximation: We will sometimes answer yes for

something that should be no, but we will never answer no for
something that should be yes

!   Observation 1: If one polygon of an object is inside a cell,
most of its other polygons probably are also
! Should we store lists of objects or polygons?

!   Observation 2: If a bounding volume for an object
intersects the cell, the object probably also does
! Should we test objects or their bounding volumes? (There is more

than one answer to this - the reasons are more interesting)

Objects in Multiple Cells

!   Assume an object intersects more than one cell
!   Typically store pointers to it in all the cells it intersects

! Why can’t we store it in just one cell? Consider the ray
intersection test

!   But it might be considered twice for some tests, and this
might be a problem
! One solution is to flag an object when it has been tested, and not

consider it again until the next round of testing
!  Why is this inefficient?

! Better solution is to tag it with the frame number it was last tested
!   Subtle point: How long before the frame counter overflows?

Neighboring Cells

!   Sometimes it helps if a cell knows it neighbors
! How far away might they be in the tree? (How many links to reach

them?)
! How does neighbor information help with ray intersection?

!   Neighbors of cell A are cells that:
! Share a face plane with A
! Have all of A’s vertices contained within the neighbor’s part of

the common plane
! Have no child with the same property

Finding Neighbors

!   Your right neighbor in a binary tree is
the leftmost node of the first sub-tree on
your right
! Go up to find first rightmost sub-tree
! Go down and left to find leftmost node

(but don’t go down further than you
went up)

! Symmetric case for left neighbor
!   Find all neighbors for all nodes with an

in-order traversal
!   Natural extensions for quadtrees and

octrees

Frustum Culling With Octrees

!   We wish to eliminate objects that do not intersect the view
frustum

!   Which node/cell do we test first? What is the test?
!   If the test succeeds, what do we know?
!   If the test fails, what do we know? What do we do?

Frustum Culling With Octrees

!   We wish to eliminate objects that do not intersect the view
frustum

!   Have a test that succeeds if a cell may be visible
! Test the corners of the cell against each clip plane. If all the

corners are outside one clip plane, the cell is not visible
! Otherwise, is the cell itself definitely visible?

!   Starting with the root node cell, perform the test
! If it fails, nothing inside the cell is visible
! If it succeeds, something inside the cell might be visible
! Recurse for each of the children of a visible cell

!   This algorithm with quadtrees is particularly effective for a
certain style of game. What style?

Interference Testing

!   Consider the problem of finding out which cells an object
interferes with (collides with)
! When do we need to answer such questions?

!   Consider a sphere and an octree
! Which octree node do we start at?
! What question do we ask at each node?
! What action do we take at each node?

Ray Intersection Testing

!   Consider the problem of finding which cells a ray
intersects
! Why might we care?

!   Consider a ray (start and direction) and an octree
! Which cell do we start at?
! How does the algorithm proceed?
! What information must be readily accessible for this algorithm?

Octree Problems

!   Octrees become very
unbalanced if the objects are
far from a uniform
distribution
! Many nodes could contain no

objects
!   The problem is the

requirement that cube always
be equally split amongst
children

A bad octree case

Kd-trees

!   A kd-tree is a tree with the following properties
! Each node represents a rectilinear region (faces aligned with axes)
! Each node is associated with an axis aligned plane that cuts its region

into two, and it has a child for each sub-region
! The directions of the cutting planes alternate with depth – height 0

cuts on x, height 1 cuts on y, height 2 cuts on z, height 3 cuts on x, …

!   Kd-trees generalize octrees by allowing splitting planes at
variable positions
! Note that cut planes in different sub-trees at the same level need not

be the same

Kd-tree Example

1

1

2
 3

2

3

4
 5
 6
 7

4

5

6

7

8
 9
 10
 11
 12
 13

8

9

10

11

12

13

Kd-tree Node Data Structure

!   What needs to be stored in a node?
! Children pointers (always two)
! Parent pointer - useful for moving about the tree
! Extents of cell - xmax, xmin, ymax, ymin, zmax, zmin
! List of pointers to the contents of the cell
! Neighbors are complicated in kd-trees, so typically not stored

Building a Kd-tree

!   Define a function, buildNode, that:
! Takes a node with its cell defined and a list of its contents
! Sets the splitting plane, creates the children nodes, divides the objects

among the children, and recurses on the children, or
! Sets the node to be a leaf node

!   Find the root cell (how?), create the root node and call buildNode with
all the objects

!   When do we choose to stop creating children?
!   What is the hard part?

Kd-tree - Build

Kd-tree

R
L

Kd-tree

R
L

RR
RL

Kd-tree

R
L

RR

RRL
 RRR

RL

Kd-tree

R
L

RR

RRL
 RRR

RL
LL
 LR

Kd-tree

R
L

RR

RRL
 RRR

RL
LL
 LR

LLL
 LLR

Kd-tree

R
L

RR

RRL
 RRR

RL
LL
 LR

LLL
 LLR

LLLL
 LLLR

Kd-tree

R
L

RR

RRL
 RRR

RL
LL
 LR

LLL
 LLR

LRL

LRR

LLLL
 LLLR

Kd-tree

R
L

RR

RRL
 RRR

RL
LL
 LR

LLL
 LLR

LRL

LRR

LRLL

LRLR

LLLL
 LLLR

Kd-tree

R
L

RR

RRL
 RRR

RL
LL
 LR

LLL
 LLR

LRL

LRR

LRLL

LRLR

LLLL
 LLLR

LRLRL
 LRLRR

Choosing a Split Plane

!   Two common goals in selecting a splitting plane for each
cell
! Minimize the number of objects cut by the plane
! Balance the tree: Use the plane that equally divides the objects into

two sets (the median cut plane)
! One possible global goal is to minimize the number of objects cut

throughout the entire tree (intractable)

Choosing Split Planes

Generally NP-complete

•  Use some heuristic

•  Minimize split objects?

•  Balance - median split?

?

AABBs and Barycenters

!  For many operations, it’s convenient to simplify
objects to “fat points”
! Compute axis-aligned bounding box
! For each coordinate, compute the mean of the bounds

Candidate Split Planes

Infinite number of choices:

•  Which planes to choose from?

•  Axis-aligned?

•  Use AABBs to define candidate planes

Choosing Split Planes

Generally NP-complete

•  Use some heuristic

•  Minimize split objects?

•  Balance?

•  Just split at midpoint of range?

Surface Area and Rays

!  The probability of a ray hitting a convex shape
that is completely inside a convex cell equals

Pr[r∩So r∩Sc]=
So
Sc

oS

cS

Surface Area Heuristic

t a a i b b iC t p N t p N t= + +

80i tt t=

it

tt

Intersection time

Traversal time

a

b

Surface Area Heuristic

a
a
Sp
S

= b
b
Sp
S

=

2n splits

Kd-tree Applications

!   Kd-trees work well when axis aligned planes cut things
into meaningful cells
! What are some common environments with rectilinear cells?

!   View frustum culling extents trivially to kd-trees
!   Kd-trees are frequently used as data structures for other

algorithms – particularly in visibility
!   Specific applications:

! Soda Hall Walkthrough project (Teller and Sequin)
!   Splitting planes came from large walls and floors

! Real-time Pedestrian Rendering (University College London)

BSP Trees

!   Binary Space Partition trees
! A sequence of cuts that divide a region of space into two

!   Cutting planes can be of any orientation
! A generalization of kd-trees, and sometimes a kd-tree is called an

axis-aligned BSP tree
!   Divides space into convex cells
!   The industry standard for spatial subdivision in game

environments
! General enough to handle most common environments
! Easy enough to manage and understand
! Big performance gains

BSP Example

!   Notes:
! Splitting planes end when they intersect their parent

node’s planes
! Internal node labeled with planes, leaf nodes with

regions

1

4
2

3
 7
5

B
A
 out
8

D
 out

6

C
 out

1
 2

3

4

5
6

7
8

out
A

out

B
C

D

BSP Tree Node Data Structure

!   What needs to be stored in a node?
! Children pointers (always two)
! Parent pointer - useful for moving about the tree
! If a leaf node: Extents of cell

!  How might we store it?
! If an internal node: The split plane
! List of pointers to the contents of the cell
! Neighbors are useful in many algorithms

!   Typically only store neighbors at leaf nodes
!  Cells can have many neighboring cells

! Portals are also useful - holes that see into neighbors

Building a BSP Tree

!   Define a function, buildNode, that:
! Takes a node with its cell defined and a list of its contents
! Sets the splitting plane, creates the children nodes, divides the

objects among the children, and recurses on the children, or
! Sets the node to be a leaf node

!   Create the root node and call buildNode with all the
objects
! Do we need the root node’s cell? What do we set it to?

!   When do we choose to stop creating children?
!   What is the hard part?

Choosing Splitting Planes

!   Goals:
! Trees with few cells
! Planes that are mostly opaque (best for visibility calculations)
! Objects not split across cells

!   Some heuristics:
! Choose planes that are also polygon planes
! Choose large polygons first
! Choose planes that don’t split many polygons
! Try to choose planes that evenly divide the data
! Let the user select or otherwise guide the splitting process
! Random choice of splitting planes doesn’t do too badly

Drawing Order from BSP Trees

!  BSP tress can be used to order polygons from back
to front, or visa-versa
! Descend tree with viewpoint
! Things on the same side of a splitting plane as the

viewpoint are always in front of things on the far side
!  Can draw from back to front

! Removes need for z-buffer, but few people care any
more

! Gives the correct order for rendering transparent objects
with a z-buffer, and by far the best way to do it

!  Can draw front to back
! Use info from front polygons to avoid drawing back

ones
! Useful in software renderers

BSP in Games

!  Use a BSP tree to partition space as you would
with an octree or kd-tree
! Leaf nodes are cells with lists of objects
! Cells typically roughly correspond to “rooms”, but

don’t have to
!  The polygons to use in the partitioning are defined

by the level designer as they build the space
! A brush is a region of space that contributes planes to

the BSP
! Artists lay out brushes, then populate them with objects
! Additional planes may also be specified

!  Sky planes for outdoor scenes, that dip down to touch the tops
of trees and block off visibility

!  Planes specifically defined to block sight-lines, but not
themselves visible

Dynamic Lights and BSPs

!   Dynamic lights usually have a limited radius of influence
to reduce the number of objects they light

!   The problem is to find, using the BSP tree, the set of
objects lit by the light (intersecting a sphere center (x,y,z)
radius r)

!   Solution: Find the distance of the center of the sphere from
each split plane
! What do we do if it’s greater than r distance on the positive side of

the plane?
! What do we do if it’s greater than r distance on the negative side of

the plane?
! What do we do if it’s within distance r of the plane?
! Any leaf nodes reached contain objects that might be lit

BSP and Frustum Culling

!   You have a BSP tree, and a view frustum
! With near and far clip planes

!   At each splitting plane:
! Test the boundaries of the frustum against the split plane
! What if the entire frustum is on one side of the split plane?
! What if the frustum intersects the split plane?

!   What do you test in situations with no far plane?
!   What do you do when you get to a leaf?

Bounding Volume Hierarchies

!   So far, we have had subdivisions that break the world into
cell

!   General Bounding Volume Hierarchies (BVHs) start with a
bounding volume for each object
! Many possibilities: Spheres, AABBs, OBBs, k-dops, …
! More on these later

!   Parents have a bound that bounds their children’s bounds
! Typically, parent’s bound is of the same type as the children’s
! Can use fixed or variable number of children per node

!   No notion of cells in this structure

BVH Example

BVH Construction

!   Simplest to build top-down
! Bound everything
! Choose a split plane (or more), divide objects into sets
! Recurse on child sets

!   Can also be built incrementally
! Insert one bound at a time, growing as required
! Good for environments where things are created dynamically

!   Can also build bottom up
! Bound individual objects, group them into sets, create parent,

recurse
! What’s the hardest part about this?

BVH Operations

!   Some of the operations we’ve looked at so far work with
BVHs
! Frustum culling
! Collision detection

!   BVHs are good for moving objects
! Updating the tree is easier than for other methods
! Incremental construction also helps (don’t need to rebuild the

whole tree if something changes)
!   But, BVHs lack some convenient properties

! For example, not all space is filled, so algorithms that “walk”
through cells won’t work

Visibility

!   Visibility algorithms aim to identify everything that will be
visible, and not much more

!   Trade off: Application-side time on visibility, vs. hardware
time on processing invisible stuff

!   Conservative Visibility: Identify more than what is visible
and clean up remaining with a z-buffer

!   The simplest are view-frustum algorithms that eliminate
objects outside the view frustum
! These algorithms don’t do very well on scenes with high depth

complexity, or many objects behind a single pixel
! Buildings are a classic case of high depth complexity

Point-based vs. Cell-based

!   Point-based algorithms compute visibility from a specific
point
! Which point?
! How often must you compute visibility?

!   Cell-based algorithms compute visibility from an entire
cell
! Union of the stuff visible from each point in the cell
! How often must you compute visibility?

!   Which method has a smaller visible set?
!   Which method is suitable for pre-computation?

Cell-Portal Structures

!   Cell-Portal data structures dispense with the hierarchy and
just store neighbor information
! This make them graphs, not trees

!   Cells are described by bounding polygons
!   Portals are polygonal openings between cells
!   Good for visibility culling algorithms, OK for collision

detection and ray-casting
!   Several ways to construct

! By hand, as part of an authoring process
! Automatically, starting with a BSP tree or kd-tree and extracting

cells and portals
! Explicitly, as part of an automated modeling process

Cell Portal Example

!   Portals can be one way
(directed edges)

!   Graph is normally stored in
adjacency list format
! Each cell stores the edges

(portals) out of it

A
 B

C
 D

E
 F

A
 B

C
 D

E
 F

Cell-Portal Visibility

!   Keep track of which cell the viewer is in
!   Somehow walk the graph to enumerate all the

visible regions
!   Cell-based: Preprocess to identify the potentially

visible set (PVS) for each cell
! Set may contain whole cells or individual objects

!   Point-based: Traverse the graph at runtime
! Granularity can be whole cells, regions, or objects

!   Trend is toward point-based, but cell-based is still
very common
! Why choose one over the other?

Potentially Visible Sets

!   PVS: The set of cells/regions/objects/polygons that can be
seen from a particular cell
! Generally, choose to identify objects that can be seen
! Trade-off is memory consumption vs. accurate visibility

!   Computed as a pre-process
! Have to have a strategy to manage dynamic objects

!   Used in various ways:
! As the only visibility computation - render everything in the PVS

for the viewer’s current cell
! As a first step - identify regions that are of interest for more

accurate run-time algorithms

Cell-to-Cell PVS

!   Cell A is in cell B’s PVS if there exist a stabbing line that originates on
a portal of B and reaches a portal of A
! A stabbing line is a line segment intersecting only portals
! Neighbor cells are trivially in the PVS

I
 J

H

G
A

C

B
 E

F

D

PVS for I contains:

B, C, E, F, H, J

Finding Stabbing Lines

!   In 2D, have to find a line that separates
the left edges of the portals from the right
edges
! A linearly separable set problem solvable

in O(n) where n is the number of portals
!   In 3D, more complex because portals are

now a sequence of arbitrarily aligned
polygons
! Put rectangular bounding boxes around

each portal and stab those
! O(nlogn) algorithm

L
 L

L
L
R

R

R

R

Cell-To-Region PVS

!   Identify which regions are visible from a cell
! Add objects within region to PVS for the cell

!   Key idea is separating planes (or lines in 2D):
! Lines going through left edge of one portal and right edge of the

other, and vice versa
! Potentially visible region is bounded by planes
! In 3D, have to find maximal planes (those that make region biggest)

This picture should remind you of
something (Hint: Think of the left
portal as a light source)

Cell-To-Region (More)

!   If the sequence has multiple portals, find maximal separating lines

!   This work originates from many sources, including shadow
computations and mesh generation for radiosity

!   More applications of separating and supporting planes later
! Is it OK to use portals that are larger than the actual opening?
! Is it OK to use portals that are smaller than the actual opening?

Properties of PVSs?

!   Almost all of the work is done as a preprocess
! At run-time, simply traverse PVS and render contents
! Can pre-compute display lists for each cell – fast rendering

!   Most algorithms go further than just Cell-to-Cell PVS
! It overestimates by quite a lot – PVS removes 90% of the model,

99.6% is actually invisible, and better visibility gets 98% (Teller
91)

!   Cell-to-Cell PVS is good for dynamic objects
! Associate moving objects with the cell they currently occupy
! Draw a moving object if the cell it is in is visible

PVS Problems?

!   Does not take into account the viewer’s location, so reports
things that the viewer cannot possibly see

!   Not good at managing dynamic cells/portals
! What do you do for doors that can be open or closed?

!   Pre-processing time can be huge
! Impacts development of game – turnaround time for changes is

large

!   Other algorithms address these things

Enhancing Cell-to-Anything

!   If the viewer cannot go everywhere in the cell, then cell-
based visibility will be too pessimistic

!   One solution is to add special cells that the viewer can see
into, but can’t see out of
! Put them in places that the viewer cannot go, but can still see

!  Above a certain altitude in outdoor games
!  Below the player’s minimum eye level

! Basically implemented as one-way portals
!   The portals only exist in the direction into the cell

! Note, doesn’t work if the player should be able to see through a
special cell into another cell beyond – why not?

Runtime Portal Visibility

!   Define a procedure renderCell:
! Takes a view frustum and a cell

!   Viewer not necessarily in the cell
! Draws the contents of the cell that are in the frustum
! For each portal out of the cell, clips the frustum to that portal and recurses

with the new frustum and the cell beyond the portal
!   Make sure not to go to the cell you entered

!   Start in the cell containing the viewer, with the full viewing frustum
!   Stop when no more portals intersect the view frustum

Eye-to-Region Example (1)

View

Eye-to-Region Example (2)

Implementation

!   Each portal that is passed through contributes some
clipping planes to the frustum
! If the hardware has enough planes, add them as hardware clipping

planes
! Or, clip object bounding volumes against them to determine which

objects to draw
!   Mirrors are reasonably easy to deal with

! Flip the view frustum about the mirror
! Add appropriate clipping planes to make sure the right things are

drawn
!   A very effective algorithm if the portals are simple

! More complex portals can be bounded with screen-space
rectangles

No Cell or Portals?

!   Many scenes do not admit a good cell and portal structure
! Scenes without large co-planar polygons to act as blockers or cell

walls
! Canonical example is a forest – you can’t see through it, but no one

leaf is responsible

!   What can we do?
! Find occluders and use them to cull geometry
! Inverse of cells as portals: Assume all space is open and explicitly

look at places where it is blocked

Using Occluders

!   Assume the occluder is a polygon
!   Form clipping planes using the eye

point and the polygon edges
! Supporting planes

!   Objects inside all of the occluder’s
clipping planes are NOT visible
! Occluder itself is a clipping plane
! Can use tests similar to view frustum

culling, but note that now we trivially
accept as soon as the object is outside
a clipping plane

eye

occluder

supporting planes

Simple Occluder Finding

!   Cell based approach
!   Find good sets of occluders for each cell in a preprocess

! At run time, use occluders from the viewer’s region

!   What makes a good occluder?
! Things that occlude lots of stuff
! What properties will a good occluder have?

Simple Occluder Issues

!   Works best when there are large polygons close to the viewer
! Dashboards are a good example

!   For objects, how do you choose their “occlusion shape”?
!   Level designers can add special polygons just to act as occluders

! In what situation would you do this?
! But should they be drawn?

!   Cell size is clearly important
!   Problem: If an object is partially hidden by one occluder, and partially

by another, it is hard to determine whether the entire object is occluded

Occluder Fusion

!   Small occluders can be merged to generate larger
occluders
! Level editors are essentially doing this by hand when they place

special occluders

!   Key insight: If a potential occluder intersects the occluded
region of another, they can be fused
! Depth of fused occluder is farthest depth of fused occluders

Algorithms for Combining Occluders

!   Occlusion Horizons work for 2.5D scenes
! Great for cities and the like
! An extension exists for relatively simple 3D scenes (eg bridges)

!   Green’s Hierarchical Z-Buffer builds occluders in screen space and
does occlusion tests in screen space
! Requires special hardware or a software renderer

!   Zhang et.al. Hierarchical Occlusion Maps render occluders into a
texture map, then compare objects to the map
! Uses existing hardware, but pay for texture creation operations at every

frame
! Allows for approximate visibility if desired (sometimes don’t draw things

that should be)
!   Schaufler et.al. Occluder Fusion builds a spatial data structure of

occluded regions

