
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

Dynamic Path Planning, Flocking
Spring 2012

Dynamic Path Planning

!   What happens when the environment changes after the
plan has been made?
! The player does something
! Other agents get in the way (in this case, you know that the

environment will change at the time you make the plan)
!   The solution strategies are highly dependent on the nature

of the game, the environment, the types of AI, and so on
!   Three approaches:

! Try to avoid the problem
! Re-plan when something goes wrong
! Reactive planning

Avoiding Plan Changes

!   Partial planning: Only plan short segments of path at a time
! Stop A* after a path of some length is found, even if the goal is not

reached - use best estimated path found so far
!   Extreme case: Use greedy search and only plan one step at a time
!  Common case: Hierarchical planning and only plan low level when needed

! Underlying idea is that a short path is less likely to change than a long
path

! But, optimality will be sacrificed
! Another advantage is more even frame times

!   Other strategies:
! Wait for the blockage to pass - if you have reason to believe it will
! Lock the path to other agents - but implies priorities

Re-Planning

!   If you discover the plan has gone wrong, create a new one
!   The new plan assumes that the dynamic changes are

permanent
!   Usually used in conjunction with one of the avoidance

strategies
! Re-planning is expensive, so try to avoid having to do it
! No point in generating a plan that will be re-done - suggests partial

planning in conjunction with re-planning

Reactive Planning

!   A reactive agent plans only its next step, and only uses immediately
available information

!   Best example for path planning is potential field planning
! Set up a force field around obstacles (and other agents)
! Set up a gradient field toward the goal
! The agent follows the gradient downhill to the goal, while the force field

pushes it away from obstacles
! Can also model velocity and momentum - field applies a force

!   Potential field planning is reactive because the agent just looks at the
local gradient at any instant

!   Has been used in real robots for navigating things like hallways

Potential Field
!   Red is start point, blue is goal
!   This used a quadratic field

strength around the obstacles
!   Note that the boundaries of the

world also contribute to the field

Creating the Field

!   The constant gradient can be a simple linear gradient based
on distance from the goal, dgoal: fgoal=k dgoal

!   The obstacles contribute a field strength based on the
distance from their boundary, fi(di)
! Linear, quadratic, exponential, something else
! Normally truncate so that field at some distance is zero. Why?
! Strength determines how likely the agent is to avoid it

!   Add all the sub-fields together to get overall field
! Do you recall what modeling technique this resembles?

Following the Field

!   At each step, the agent needs to know which direction is “downhill”
!   Compute the gradient of the field

! Compute the gradients of each component and add
! Need partial derivatives in x and y (for 2D planning)

!   Best approach is to consider the gradient as an acceleration
! Automatically avoids sharp turns and provides smooth motion
! Higher mass can make large objects turn more slowly
! Easy to make frame-rate independent
! But, high velocities can cause collisions because field is not strong enough

to turn the object in time
! One solution is to limit velocity - want to do this anyway because the field

is only a guide, not a true force

Following Examples

No momentum - choose to go to
neighbor with lowest field strength

Momentum - but with linear obstacle
field strength and moved goal

Discrete Approximation

!   Compute the field on a grid
! Allows pre-computation of fields that do not change, such as fixed

obstacles
! Moving obstacles handled as before

!   Use discrete gradients
! Look at neighboring cells
! Go to neighboring cell with lowest field value

!   Advantages: Faster
!   Disadvantages: Space cost, approximate
!   Left example on previous slide is a (very fine) discrete

case

Potential Field Problems

!   There are many parameters to tune
! Strength of the field around each obstacle
! Function for field strength around obstacle
! Steepness of force toward the goal
! Maximum velocity and mass

!   Goals conflict
! High field strength avoids collisions, but produces big forces and

hence unnatural motion
! Higher mass smoothes paths, but increases likelihood of collisions

!   Local minima cause huge problems

Bloopers

Field too weak Field too strong

Local Minima Example

The Local Minima Problem

!   Recall, path planning can be viewed as optimization
!   Potential field planning is gradient descent optimization
!   The biggest problem with gradient descent is that it gets stuck in local

minima
!   Potential field planning suffers from exactly the same problem
!   Must have a way to work around this

! Go back if a minima is found, and try another path
!   With what sorts of environments will potential fields work best?
!   What form of waypoint-based search is it similar to?

Flocking Models (Reynolds 87)

!   Potential fields are most often used in avoiding collisions between the
members of a group
! Each member pushes on its neighbors to keep them from colliding

!   Additional rules for groups can be defined - the result is a flocking
model, or herding, or schooling, …

!   Each rule contributes a desired direction, which are combined in some
way to come up with the acceleration

!   The aim is to obtain emergent behavior:
! Define simple rules on individuals that interact to give interesting global

behavior
! For example, rules for individual birds make them form a flock, but we

never explicitly specify a leader, or the exact shape, or the speed, …

Flocking Rules

!   Separation: Try to avoid running into local flock-mates
! Works just like potential fields
! Normally, use a perception volume to limit visible flock-mates

!   Alignment: Try to fly in same direction as local flock-
mates
! Gets everyone flying in the same direction

!   Cohesion: Try to move toward the average position of
local flock-mates
! Spaces everyone out evenly, and keep boundary members toward

the group
!   Avoidance: Try to avoid obstacles

! Just like potential fields

Rules Illustrated

Separation:
Fly away away
from neighbors that
are “too close”

Alignment: steer
toward average
velocity

Cohesion: steer
toward average
position

Avoidance: steer
away from
obstacles

Combining Commands

!   Consider commands as accelerations
!   Give a weight to each desire

! High for avoidance, low for cohesion

!   Option 1: Apply in order of highest weight, until a max
acceleration is reached
! Ensures that high priority things happen

!   Option 2: Take weighted sum and truncate acceleration
! Makes sure some part of everything happens

Flocking Demo

http://www.red3d.com/cwr/boids/

Flocking Evaluation

!   Advantages:
! Complex behavior from simple rules
! Many types of behavior can be expressed with different rules and

parameters

!   Disadvantages:
! Can be difficult to set parameters to achieve desired result
! All the problems of potential fields regarding strength of forces

General Particle Systems

!   Flocking is a special case of a particle system
!   Objects are considered point masses from the point of view of

simulating their motion (maybe with orientation)
!   Simple rules are applied to control how the particles move
!   Particles can be rendered in a variety of ways to simulate many

different things:
! Fireworks
! Waterfalls, spray, foam
! Explosions (smoke, flame, chunks of debris)
! Clouds
! Crowds, herds

!   Widely used in movies as well as games
! The ocean spray in Titanic and Perfect Storm, for instance

Particle System Step

1.  Inject any new particles into the system and assign them their
individual attributes
•  There may be one or more sources
•  Particles might be generated at random (clouds), in a constant stream

(waterfall), or according to a script (fireworks)
2.  Remove any particles that have exceeded their lifetime

•  May have a fixed lifetime, or die on some condition
3.  Move all the current particles according to their script

•  Script typically refers to the neighboring particles and the environment
4.  Render all the current particles

•  Many options for rendering

Example: Smoke Trails

!   Particles are spawned at a constant rate
!   They have zero initial velocity, or maybe a small velocity

away from the rocket
!   Rules:

! Particles could rise or fall slowly (drift with the wind)
! Attach a parameter, density, that grows quickly then falls over time

!   Extinguish when density becomes very small
!   Render with an billboard facing the viewer, scaled

according to the density of the puff

Smoke Trails

New Extinguished

Time

Example: Explosions

!   System starts when the target is hit
!   Target is broken into pieces and a particle assigned for each piece
!   Each particle gets an initial velocity away from the center of the

explosion
!   Particle rules are:

! Move ballistically unless there is a collision
! Could take into account rigid body rotation, or just do random rotation
! Collisions are resolved by reflecting the velocity about the contact normal

!   Rendering just draws the appropriate piece of target at the particles
location

Particles Demo

