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Representation

®m We can represent a point, p = (X,y), 1n the plane

®m as a column vector

M as a row vector [.X y]
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Representation, cont.

®m We can represent a 2-D transformation M by a matrix
M —
c d
m If p is a column vector, M goes on the left: p' = Mp
x'| a bl|x
y] e dlly

= If p is a row vector, M7 goes on the right: P’ = pM"

a ¢
EUEIE W
m We will use column vectors.
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Two-dimensional transformations

m Here's all you get with a 2 x 2 transformation

matrix M:
x'| la bllx
Y| e d]|y

mSo: x'=ax+by

y =cx+dy

m We will develop some intimacy with the
elements a, b, ¢, d...
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m Suppose we choose a=d=1, b=c=0:

m Gives the identity matrix:

R o
-O 1-

®m Doesn't move the points at all
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Scaling

m Suppose b=c=0, but let a and d take on any positive value:
m Gives a scaling matrix: |[g O

0 d

m Provides differential (non-uniform) scaling in x and y:

Y
A

>

[2 0} x'=ax

0 2 yl=dy

>

23 & [°8

1 2
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Reflection

m Suppose b=c=0, but let either a or d go negative.
m Examples:

-
>
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®m Now leave a=d=1 and experiment with b
® The matrix

1 b
0 1
gives:
x'=x+by
y' =y
11
1 1 01

1 1
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FEtfect on unit square

m Let's see how a general 2 x 2 transformation M affects the
unit square:

[a b][P q r s|=[p’ q r' ¥]

c d
a bl|1I0 1 1 O O a a+b b
c dllo o1 1| 0 ¢ c+d d
1 A
1S r
P 9 > X > X

1
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Ettect on unit square, cont.

m Observe:
® Origin invariant under M

m M can be determined just by knowing how the corners (1,0) and
(0,1) are mapped
® g and d give x- and y-scaling

® ) and c give x- and y-shearing
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Rotation

®m From our observations of the effect on the unit square, it
should be easy to write down a matrix for “rotation about

the origin”:

3 } 11 [cos(6)
0] [sin(6)
! < 0] [-sin(@)
. 5 1] | cos(0)
Thus cos(8) -—sin(6
M, = R() = (0) (0)

sin(0) cos(0)
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Linear transtformations

® The unit square observations also tell us the 2x2 matrix transformation
implies that we are representing a point in a new coordinate system:

p' =Mp

[
c
<

=X"u+y-v

®m where u=[a c]" and v=[b d]" are vectors that define a new basis for a
linear space.

m The transformation to this new basis (a.k.a., change of basis) is a
linear transformation.
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Iimitations of the 2 x 2 matrix

m A 2 x 2 linear transformation matrix allows
m Scaling
m Rotation
m Reflection

m Shearing

® (Q: What important operation does that leave out?
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Affine transformations

® In order to incorporate the 1dea that both the basis and the
origin can change, we augment the linear space u, v with
an origin t.

m Note that while u and v are basis vectors, the origin tis a
point.

m We call u, v, and t (basis and origin) a frame for an affine
space.

®m Then, we can represent a change of frame as:
pP=x-u+y- v+t

m This change of frame 1s also known as an affine
transformation.

®m How do we write an affine transformation with matrices?
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Homogeneous Coordinates

m To represent transformations among affine frames, we can loft the
problem up into 3-space, adding a third component to every point:

p'=Mp
a b t][x]
=|c d 1|y
0 1][1]
.
=[u v t]|y
-1-

=x-u+y- v+l-t

® Note that [a ¢ 0]" and [b d 0]" represent vectors and
(2. ¢, 11", [x y 1]" and [x'y" 1]" represent points.
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Homogeneous coordinates

This allows us to perform translation as well as the linear
transformations as a matrix operation:
p, = MTp
] [1 0 £][x

X

y =10 1 «z{|y

1] (0 0 TIj[1
x'=x+1t,
y=y+t,
Yy Yy
I 0 1
1 1 0 1 12
0 0 1

> X t > X
1

1
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Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, R,
about any point q = [q, g, 1]" with a matrix:

> <
> <
NS
> <
Q

1. Translate q to origin
2. Rotate

3. Translate back
Line up the matrices for these step in right to left order and multiply.

Note: Transformation order is important!!
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Basic 3-D transtormations: scaling

Some of the 3-D transformations are just like the 2-D ones.

For example, scaling:
Y gy d
A x| s, 0 0 O
y|l 10 s, 0 0
Z |0 0 5. 0
""" s | *li] lo o o1

Z
Z
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Rotation in 3D

Rotation now has more possibilities in 3D:

1 0 0 0]
0O cos(f) -sin(f) O
RO)=| 1
0 sin(@) cos(@) O 4R,
0 0 0 1]
cos(f) 0 sin(@) O O X
0 1 0 0 R Ry
R (0)=| . z .
—sin(@) 0 cos(6) O
0 ) ORESl Use right hand rule
‘cos(8) -sin(@) 0 O]
sin(@) cos(8) 0 O
R (@)-| O 5O
0 0 1 O
0 0 0 1]
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Shearing in 3D

m Shearing 1s also more complicated. Here is one

example: 1 1 b 0 0]fx
y' ) 0O 1 0 Ofly
Z1 10 0 1 0l|z
1] o 0 0 1|1
y Yy

: ' Ay
e A

z

m We call this a shear with respect to the x-z plane.
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