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Representation 

!  We can represent a point, p = (x,y), in the plane 

! as a column vector  

 
 
 
! as a row vector 
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Representation, cont. 

!   We can represent a 2-D transformation M by a matrix 
 
 

!   If p is a column vector, M goes on the left: 

!   If p is a row vector, MT goes on the right: 
 

!   We will use column vectors. 
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Two-dimensional transformations 

!  Here's all you get with a 2 x 2 transformation 
matrix M: 

 
 
!  So: 

!  We will develop some intimacy with the 
elements a, b, c, d… 
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Identity 

!   Suppose we choose a=d=1, b=c=0: 
! Gives the identity matrix: 

!  Doesn't move the points at all 
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Scaling 

!   Suppose b=c=0, but let a and d take on any positive value: 
! Gives a scaling matrix: 

! Provides differential (non-uniform) scaling in x and y: 
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Reflection 

!  Suppose b=c=0, but let either a or d go negative. 
!  Examples: 
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Shear 

!   Now leave a=d=1 and experiment with b 
!   The matrix 

  gives: 
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Effect on unit square 

!   Let's see how a general 2 x 2 transformation M affects the 
unit square:  
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Effect on unit square, cont. 

!   Observe: 
! Origin invariant under M 
! M can be determined just by knowing how the corners (1,0) and 

(0,1) are mapped 
! a and d give x- and y-scaling 
! b and c give x- and y-shearing 
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Rotation 

!   From our observations of the effect on the unit square, it 
should be easy to write down a matrix for “rotation about 
the origin”: 

 
 
 

  Thus 
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Linear transformations 

!   The unit square observations also tell us the 2x2 matrix transformation 
implies that we are representing a point in a new coordinate system: 

 
 
 
 
 

!   where u=[a c]T and v=[b d]T are vectors that define a new basis for a 
linear space. 
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Limitations of the 2 x 2 matrix 

!   A 2 x 2 linear transformation matrix allows 
! Scaling 
! Rotation 
! Reflection 
! Shearing 

!    Q: What important operation does that leave out? 
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Affine transformations 

!   In order to incorporate the idea that both the basis and the 
origin can change, we augment the linear space u, v with 
an origin t. 

!   Note that while u and v are basis vectors, the origin t is a 
point. 

!   We call u, v, and t (basis and origin) a frame for an affine 
space. 

!   Then, we can represent a change of frame as: 
 
 
!   This change of frame is also known as an affine 

transformation. 
!   How do we write an affine transformation with matrices? € 
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Homogeneous Coordinates 

!   To represent transformations among affine frames, we can loft the 
problem up into 3-space, adding a third component to every point: 

 
 
 
 
 

 
 

!   Note that [a c 0]T and [b d 0]T represent vectors and 
 [tx ty 1]T, [x y 1]T and [x' y' 1]T represent points. 
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Homogeneous coordinates 

This allows us to perform translation as well as the linear 
transformations as a matrix operation: 
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Rotation about arbitrary points 

1.  Translate q to origin 
2.  Rotate 
3.  Translate back 
Line up the matrices for these step in right to left order and multiply. 

  

  Note: Transformation order is important!! 

Until now, we have only considered rotation about the origin. 

With homogeneous coordinates, you can specify a rotation, Rq, 
about any point q = [qx qy 1]T with a matrix: 
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Basic 3-D transformations: scaling 

Some of the 3-D transformations are just like the 2-D ones.   
For example, scaling: 
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Translation in 3D 
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Rotation in 3D 

Rotation now has more possibilities in 3D: 
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Shearing in 3D 

!  Shearing is also more complicated.  Here is one 
example: 

 

!  We call this a shear with respect to the x-z plane. 
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