
University of Texas at Austin CS 378 – Game Technology Don Fussell

CS 378: Computer Game Technology

3D Engines and Scene Graphs
Spring 2012

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 2

Representation

!  We can represent a point, p = (x,y), in the plane

! as a column vector

! as a row vector

€

x
y
"

$
%

&
'

€

x y[]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 3

Representation, cont.

!   We can represent a 2-D transformation M by a matrix

!   If p is a column vector, M goes on the left:

!   If p is a row vector, MT goes on the right:

!   We will use column vectors.

€

" p = pMT

" x " y [] = x y[]
a c
b d

$
%

&

'
(€

" p = Mp
" x
" y

$
%
&

'
(=

a b
c d

$
%

&

'
(

x
y

$
%
&

'
(€

M =
a b
c d
"

$

%

&
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 4

Two-dimensional transformations

!  Here's all you get with a 2 x 2 transformation
matrix M:

!  So:

!  We will develop some intimacy with the
elements a, b, c, d…

€

" x
" y

$
%
&

'
(=

a b
c d

$
%

&

'
(

x
y

$
%
&

'
(

€

" x = ax + by
" y = cx + dy

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 5

Identity

!   Suppose we choose a=d=1, b=c=0:
! Gives the identity matrix:

! Doesn't move the points at all

€

1 0
0 1
"

$

%

&
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 6

Scaling

!   Suppose b=c=0, but let a and d take on any positive value:
! Gives a scaling matrix:

! Provides differential (non-uniform) scaling in x and y:

€

a 0
0 d
"

$

%

&
'

€

" x = ax
" y = dy

€

2 0
0 2
"

$

%

&
'

€

1 2 0
0 2

"

$

%

&
'

1

2

1 2

1

2

1 2

1

2

1 2

x

y

x

y

x

y

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 7

Reflection

!  Suppose b=c=0, but let either a or d go negative.
!  Examples:

x

y

x

y

x

y

x

y

€

−1 0
0 1

$
%

&

'
(

€

1 0
0 −1

$
%

&

'
(

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 8

Shear

!   Now leave a=d=1 and experiment with b
!   The matrix

 gives:

€

1 b
0 1
"

$

%

&
'

€

" x = x + by
" y = y

1

1

1

1
x

y

x

y

€

1 1
0 1
"

$

%

&
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 9

Effect on unit square

!   Let's see how a general 2 x 2 transformation M affects the
unit square:

1

1

p q

rs

x

y

x

y

€

a b
c d
"

$

%

&
' p q r s[] = (p (q (r (s []

a b
c d
"

$

%

&
'
0 1 1 0
0 0 1 1
"

$

%

&
' =

0 a a + b b
0 c c + d d
"

$

%

&
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 10

Effect on unit square, cont.

!   Observe:
! Origin invariant under M
! M can be determined just by knowing how the corners (1,0) and

(0,1) are mapped
! a and d give x- and y-scaling
! b and c give x- and y-shearing

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 11

Rotation

!   From our observations of the effect on the unit square, it
should be easy to write down a matrix for “rotation about
the origin”:

 Thus

1

1
x

y

x

y

€

1
0
"

$
%

&
' →

cos(θ)
sin(θ)
"

$

%

&
'

0
1
"

$
%

&
' →

−sin(θ)
cos(θ)
"

$

%

&
'

€

MR = R(θ) =
cos(θ) −sin(θ)
sin(θ) cos(θ)
$

%
&

'

(
)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 12

Linear transformations

!   The unit square observations also tell us the 2x2 matrix transformation
implies that we are representing a point in a new coordinate system:

!   where u=[a c]T and v=[b d]T are vectors that define a new basis for a
linear space.

!   The transformation to this new basis (a.k.a., change of basis) is a
linear transformation. €

" p = Mp

=
a b
c d

$
%

&

'
(
x
y

$
%
&

'
(

= u v[]
x
y

$
%
&

'
(

= x ⋅u + y ⋅ v

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 13

Limitations of the 2 x 2 matrix

!   A 2 x 2 linear transformation matrix allows
! Scaling
! Rotation
! Reflection
! Shearing

!   Q: What important operation does that leave out?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 14

Affine transformations

!   In order to incorporate the idea that both the basis and the
origin can change, we augment the linear space u, v with
an origin t.

!   Note that while u and v are basis vectors, the origin t is a
point.

!   We call u, v, and t (basis and origin) a frame for an affine
space.

!   Then, we can represent a change of frame as:

!   This change of frame is also known as an affine

transformation.
!   How do we write an affine transformation with matrices? €

" p = x ⋅u + y ⋅ v + t

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 15

Homogeneous Coordinates

!   To represent transformations among affine frames, we can loft the
problem up into 3-space, adding a third component to every point:

!   Note that [a c 0]T and [b d 0]T represent vectors and
 [tx ty 1]T, [x y 1]T and [x' y' 1]T represent points.

€

" p = Mp

=

a b tx
c d ty
0 0 1

$

%
%
%

&

'

(
(
(

x
y
1

$

%
%
%

&

'

(
(
(

= u v t[]
x
y
1

$

%
%
%

&

'

(
(
(

= x ⋅u + y ⋅ v +1⋅ t

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 16

Homogeneous coordinates

This allows us to perform translation as well as the linear
transformations as a matrix operation:

€

" p = MTp
" x
" y
1

$

%
%
%

&

'

(
(
(

=

1 0 tx

0 1 ty

0 0 1

$

%
%
%

&

'

(
(
(

x
y
1

$

%
%
%

&

'

(
(
(

" x = x + tx

" y = y + ty

1
x

y

x

y

1 1

1

€

1 0 1
0 1 1 2
0 0 1

"

$
$
$

%

&

'
'
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 17

Rotation about arbitrary points

1.  Translate q to origin
2.  Rotate
3.  Translate back
Line up the matrices for these step in right to left order and multiply.

 Note: Transformation order is important!!

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, Rq,
about any point q = [qx qy 1]T with a matrix:

x

y

x

y

x

y

x

y

q
θ

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 18

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.
For example, scaling:

x x

y

z

y

z

€

" x
" y
" z
1

$

%
%
%
%

&

'

(
(
(
(

=

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 19

Translation in 3D

x x

y

z

y

z

€

" x
" y
" z
1

$

%
%
%
%

&

'

(
(
(
(

=

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 20

Rotation in 3D

Rotation now has more possibilities in 3D:

x

z

y

xR

yR

zR

Use right hand rule

€

Rx (θ) =

1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

Ry (θ) =

cos(θ) 0 sin(θ) 0
0 1 0 0

−sin(θ) 0 cos(θ) 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

Rz(θ) =

cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0
0 0 1 0
0 0 0 1

$

%

&
&
&
&

'

(

)
)
)
)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 21

Shearing in 3D

!  Shearing is also more complicated. Here is one
example:

!  We call this a shear with respect to the x-z plane.

x x

y

z

y

z

€

" x
" y
" z
1

$

%
%
%
%

&

'

(
(
(
(

=

1 b 0 0
0 1 0 0
0 0 1 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

x
y
z
1

$

%
%
%
%

&

'

(
(
(
(

