CS 378: Computer Game Technology

AI – Decision Trees and Rule Systems
Spring 2012
Today

- AI
 - Decision trees
 - Rule-based systems
Classification

- Our aim is to decide which action to take given the world state
- Convert this to a classification problem:
 - The state of the world is a set of attributes (or features)
 - Who I can see, how far away they are, how much energy, …
 - Given any state, there is one appropriate action
 - Extends to multiple actions at the same time
 - The action is the class that a world state belongs to
 - Low energy, see the enemy means I should be in the retreat state
- Classification problems are very well studied
Decision Trees

- Nodes represent attribute tests
 - One child for each possible outcome of the test
- Leaves represent classifications
 - Can have the same classification for several leaves
- Classify by descending from root to a leaf
 - At each node perform the test and descend the appropriate branch
 - When a leaf is reached return the classification (action) of that leaf
- Decision tree is a “disjunction of conjunctions of constraints on the attribute values of an instance”
 - Action if (A and B and C) or (A and ~B and D) or (…) …
 - Retreat if (low health and see enemy) or (low health and hear enemy) or (…) …
Decision Tree for Quake

- Just one tree
- Attributes: Enemy=<t,f>
 Low=<t,f> Sound=<t,f>
 Death=<t,f>
- Actions: Attack, Retreat, Chase, Spawn, Wander
- Could add additional trees:
 - If I’m attacking, which weapon should I use?
 - If I’m wandering, which way should I go?
 - Can be thought of as just extending given tree (but easier to design)
 - Or, can share pieces of tree, such as a Retreat sub-tree
Compare and Contrast
Different Trees – Same Decision

- S?
 - L?
 - t
 - Retreat
 - t
 - D?
 - f
 - Spawn
 - t
 - Wander
 - f
 - E?
 - t
 - Attack
 - t
 - Retreat
 - f
 - Chase
 - f
 - E?
 - t
 - D?
 - f
 - Spawn
 - t
 - Attack
 - f
 - Wander
 - f
 - L?
 - t
 - Retreat
 - f
 - Chase
 - f
 - E?
 - t
 - D?
 - f
 - Spawn
 - t
 - Wander
 - f
 - Attack
 - f
 - Wander
Handling Simultaneous Actions

- Treat each output command as a separate classification problem
 - Given inputs should walk => <forward, backward, stop>
 - Given inputs should turn => <left, right, none>
 - Given inputs should run => <yes, no>
 - Given inputs should weapon => <blaster, shotgun…>
 - Given inputs should fire => <yes, no>
- Have a separate tree for each command
- If commands are not independent, two options:
 - Have a general conflict resolution strategy
 - Put dependent actions in one tree
Deciding on Actions

- Each time the AI is called:
 - Poll each decision tree for current output
 - Event driven - only call when state changes
- Need current value of each input attribute
 - All sensor inputs describe the state of the world
- Store the state of the environment
 - Most recent values for all sensor inputs
 - Change state upon receipt of a message
 - Or, check validity when AI is updated
 - Or, a mix of both (polling and event driven)
Sense, Think, Act Cycle

- **Sense**
 - Gather input sensor changes
 - Update state with new values

- **Think**
 - Poll each decision tree

- **Act**
 - Execute any changes to actions
Building Decision Trees

- Decision trees can be constructed by hand
 - Think of the questions you would ask to decide what to do
 - For example: Tonight I can study, play games or sleep. How do I make my decision?
- But, decision trees are typically *learned*:
 - Provide examples: many sets of attribute values and resulting actions
 - Algorithm then constructs a tree from the examples
 - Reasoning: We don’t know how to decide on an action, so let the computer do the work
 - Whose behavior would we wish to learn?
Decision trees are usually learned by induction
- Generalize from examples
- Induction doesn’t guarantee correct decision trees

Bias towards smaller decision trees
- Occam’s Razor: Prefer simplest theory that fits the data
- Too expensive to find the very smallest decision tree

Learning is non-incremental
- Need to store all the examples

ID3 is the basic learning algorithm
- C4.5 is an updated and extended version
Induction

- If X is true in every example that results in action A, then X must always be true for action A
 - More examples are better
 - Errors in examples cause difficulty
 - If X is true in most examples X must always be true
 - ID3 does a good job of handling errors (noise) in examples
 - Note that induction can result in errors
 - It may just be coincidence that X is true in all the examples

- Typical decision tree learning determines what tests are always true for each action
 - Assumes that if those things are true again, then the same action should result
Learning Algorithms

- Recursive algorithms
 - Find an attribute test that separates the actions
 - Divide the examples based on the test
 - Recurse on the subsets

- What does it mean to separate?
 - Ideally, there are no actions that have examples in both sets
 - Failing that, most actions have most examples in one set
 - The thing to measure is entropy - the degree of homogeneity (or lack of it) in a set
 - Entropy is also important for compression

- What have we seen before that tries to separate sets?
 - Why is this different?
Induction requires Examples

- Where do examples come from?
 - Programmer/designer provides examples
 - Capture an expert player’s actions, and the game state, while they play
- # of examples needed depends on difficulty of concept
 - Difficulty: Number of tests needed to determine the action
 - More is always better
- Training set vs. Testing set
 - Train on most (75%) of the examples
 - Use the rest to validate the learned decision trees by estimating how well the tree does on examples it hasn’t seen
Decision Tree Advantages

- Simpler, more compact representation
- State is recorded in a memory
 - Create “internal sensors” – Enemy-Recently-Sensed
- Easy to create and understand
 - Can also be represented as rules
- Decision trees can be learned
Decision Tree Disadvantages

- Decision tree engine requires more coding than FSM
 - Each tree is “unique” sequence of tests, so little common structure
- Need as many examples as possible
- Higher CPU cost - but not much higher
- Learned decision trees may contain errors
References

- Quinlan: Combining instance-based and model-based learning, 10th International Conference on Machine Learning, 1993
Rule-Based Systems

- Decision trees can be converted into rules
 - Just test the disjunction of conjunctions for each leaf
- More general rule-based systems let you write the rules explicitly
- System consists of:
 - A rule set - the rules to evaluate
 - A working memory - stores state
 - A matching scheme - decides which rules are applicable
 - A conflict resolution scheme - if more than one rule is applicable, decides how to proceed
- What types of games make the most extensive use of rules?
Rule-Based Systems Structure

Rule Memory

Working Memory

Program
Procedural Knowledge
Long-term Knowledge
Data
Declarative Knowledge
Short-term Knowledge

Match
Act
Conflict Resolution

AI Cycle

Game

Sensing

Memory
- Changes to Working Memory

Match
- Rule instantiations that match working memory

Act
- Selected Rule

Conflict Resolution

Actions
; The AI will attack once at 1100 seconds and then again
; every 1400 sec, provided it has enough defense soldiers.

(defrule
 (game-time > 1100) ; Rule
 =>
 (attack-now)
 (enable-timer 7 1400)) ; Action

(defrule
 (timer-triggered 7)
 (defend-soldier-count >= 12)
 =>
 (attack-now)
 (disable-timer 7)
 (enable-timer 7 1400))
(defrule true
 =>
 (enable-timer 4 3600)
 (disable-self))

(defrule timer-triggered 4
 =>
 (cc-add-resource food 700)
 (cc-add-resource wood 700)
 (cc-add-resource gold 700)
 (disable-timer 4)
 (enable-timer 4 2700)
 (disable-self))

What is it doing?
Implementing Rule-Based Systems

- Where does the time go?
 - 90-95% goes to Match
- Matching all rules against all of working memory each cycle is way too slow
- Key observation
 - # of changes to working memory each cycle is small
 - If conditions, and hence rules, can be associated with changes, then we can make things fast (event driven)
If only simple tests in conditions, compile rules into a *match net*
- Simple means: Can map changes in state to rules that must be reevaluated

- Process changes to working memory
- Associate changes with tests
- Expected cost: Linear in the number of changes to working memory

Rules: Bit vectors store which tests are true

Rules with all tests true go in conflict set

R1: If A, B, C, then ...
R2: If A, B, D, then ...

Efficient Special Case
Rules can be arbitrarily complex
 - In particular: function calls in conditions and actions

If we have arbitrary function calls in conditions:
 - Can’t hash based on changes
 - Run through rules one at a time and test conditions
 - Pick the first one that matches (or do something else)
 - Time to match depends on:
 - Number of rules
 - Complexity of conditions
 - Number of rules that don’t match
IF
 Heard([PC],UNDER_ATTACK)
 !InParty(LastAttackerOf(LastHeardBy(Myself)))
 Range(LastAttackerOf(LastHeardBy(Myself)), 5)
 !StateCheck(LastAttackerOf(LastHeardBy(Myself)), STATE_PANIC)
 !Class(Myself, FIGHTER_MAGE_THIEF)
THEN
 RESPONSE #100
 EquipMostDamagingMelee()
 AttackReevaluate(LastAttackerOf(LastHeardBy(Myself)), 30)
END
Research Rule-based Systems

- Allow complex conditions with multiple variables
 - Function calls in conditions and actions
 - Can compute many relations using rules
- Examples:
 - OPS5, OPS83, CLIPS, ART, ECLIPS, …
- Laird: “Might be overkill for most of today’s computer game AIs”
Conflict Resolution Strategies

- What do we do if multiple rules match?
Conflict Resolution Strategies

- What do we do if multiple rules match?
 - Rule order – pick the first rule that matches
 - Makes order of loading important – not good for big systems
 - Rule specificity - pick the most specific rule
 - Rule importance – pick rule with highest priority
 - When a rule is defined, give it a priority number
 - Forces a total order on the rules – is right 80% of the time
 - Decide Rule 4 [80] is better than Rule 7 [70]
 - Decide Rule 6 [85] is better than Rule 5 [75]
 - Now have ordering between all of them – even if wrong
Basic Idea of Efficient Matching

- How do we reduce the cost of matching?
- Save intermediate match information (RETE)
 - Share intermediate match information between rules
 - Recompute intermediate information for changes
 - Requires extra memory for intermediate match information
 - Scales well to large rule sets
- Recompute match for rules affected by change (TREAT)
 - Check changes against rules in conflict set
 - Less memory than Rete
 - Doesn’t scale as well to large rule sets
- Make extensive use of hashing (mapping between memory and tests/rules)
Rule-based System: Good and Bad

- **Advantages**
 - Corresponds to way people often think of knowledge
 - Very expressive
 - Modular knowledge
 - Easy to write and debug compared to decision trees
 - More concise than FSM

- **Disadvantages**
 - Can be memory intensive
 - Can be computationally intensive
 - Sometimes difficult to debug
References

- **RETE:**

- **TREAT:**