
University of Texas at Austin                           CS 378 – Game Technology                                       Don Fussell 

CS 378: Computer Game Technology 

Game Engine Architecture 
Spring 2012 



What is a Game Engine? 

!   Runtime system 
! Low-level architecture 

!   3-d system 
!   Physics system 
!  GUI system 
!   Sound system 
!  Networking system 

! High-level architecture 
!  Game objects 

!   Attributes 
!   Behaviors 

!  Game mechanics 

!   World editor 
! Tool(s) for defining world chunks (e.g. levels) and static and 

dynamic game objects 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 



Game Engine Subsystems 

!   Runtime object model 
! Realtime object model updating 
!   Messaging and event handling 
!   Scripting 
!   Level management and streaming 
!   Objectives and game flow management 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 



What are Game Objects? 

! Anything that has a representation in the game world 
! Characters, props, vehicles, missiles, cameras, trigger volumes, lights, etc. 

! Created/modified by world editor tools 
! Managed at runtime in the runtime engine 
! Need to present an object model to designers in the editor 
! Need to implement this object model at runtime efficiently 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 



Runtime Object Model Architectures 

!   Object-centric 
! Objects implemented as class instances 
! Object’s attributes and behaviors encapsulated within the class(es) 
! Game world is a collection of game object class instances 

!   Property-centric 
! Object attributes are implemented as data tables, one per attribute 
!  Game objects are just IDs of some kind 
! Properties of an object are distributed across the tables, keyed by 

the object’s id 
! Object behaviors implicitly defined by the collection of properties 

of the object 
! Properties may be implemented as hard-coded class instances 
! Like a relational database system in some ways 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 



Object-centric Architectures 

!   Natural taxonomy of game 
object types 

!   Common, generic 
functionality at root 

!   Specific game object types 
at the leaves 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

GameObject 

MovableObject 

DrawableObject 

PacMan Ghost Pellet 

PowerPellet 

Hypothetical PacMan Class Hierarchy 



Monolithic Class Hierarchies 

!   Very intuitive for 
small simple cases 

!   Tend to grow ever 
wider and deeper 

!   Virtually all classes 
in the game inherit 
from a common base 
class 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

Actor 

Brush 

Controller 

Info 

Pawn 

Vehicle 

UnrealPawn 

RedeemerWarhead 

Scout 

AIController 

PlayerController 

GameInfo 

…

…

…

…

Light 

Inventory 

HUD 

Pickup 

Ammo 

ArmorPickup 

WeaponPickup 

Ammunition 

Powerups 

Weapon 

…

…

…

…Part of object class hierarchy 
from Unreal Tournament 2004 



Vehicle 

!   Hard to understand, maintain, and modify classes 
! Need to understand a lot of parent classes 

!   Hard to describe multidimensional taxonomies 
! What if you want to classify objects along more than one axis? 
! E.g. how would you include an amphibious vehicle in the class 

hierarchy below? 

Problems with Monolithic Hierarchies 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

LandVehicle 

Car Motorcycle Truck 

WaterVehicle 

Yacht Sailboat Cruiser 



Tempted to use Multiple Inheritance? 

!   NOOOO!!!!! 
!   There’s a reason languages like Java don’t have it 
!   Derived classes often end up with multiple copies of base 

class members 

 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

Vehicle 

LandVehicle 

AmphibiousVehicle 

WaterVehicle 



Mix-in classes 

!   Mix-in classes 
(stand alone classes 
with no base class) 
can solve the 
deadly diamond 
problem 

!   Another approach is 
to use composition 
or aggregation in 
addition to 
inheritance 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

Drawable 
(renderable model) 

Simulated 
(rigid body model) 

Trigger 
(volume) 

GameObject 
(transform, refcount) 

AnimatedMixin 
(animation controller) 

Animated 

AnimatedWithPhysics 



Observations 

! Not every set of relationships can be described in a 
directed acyclic graph 

! Class hierarchies are hard to change 
! Functionality drifts upwards 
! Specializations pay the memory cost of the 

functionality in siblings and cousins 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 



Components vs. Inheritance 

!   A simple generic 
GameObject specialized to 
add properties up to full 
blown physical simulation 

!   What if (as in your current 
games) you want to use 
physical simulation on 
objects that don’t use skeletal 
animation? 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

GameObject 

MovableObject 

DrawableObject 

CollisionObject 

AnimatedObject 

PhysicalObject 



Components vs. Inheritance 

!   One “hub” object 
that contains pointers 
to instances of 
various service class 
instances as needed. 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

GameObject 

Transform 

AnimationController 

MeshInstance 

RigidBody 



Component-based example 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

class GameObject {!
protected:!
    //  My transform (position, rotation, scale)!
    Transform m_transform;!
    // Standard components!
    MeshInstance* m_pMeshInst;!
    AnimationController* m_pAnimController;!
    RigidBody* mpRigidBody!
public:!
    GameObject() {!
        // Assume no components by default.  Derived classes will override!
        m_pMeshInst = NULL;!
        m_pAnimController = NULL;!
        m_pRigidBody = NULL;!
    }!
    ~GameObject() {  
        // Automatically delete any components created by derived classes!
        delete m_pMeshInst;!
        delete m_pAnimController;!
        delete m_pRigidBody;!
     // …!
};!



Component-based example 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

class Vehicle : public GameObject {!
protected:!
    // Add some more components specific to vehicles!
    Chassis* m_pChassis;!
    Engine*  m_pEngine;!
    // …!
public:!
    Vehicle() {!
        // Construct standard GameObject components!
        m_pMeshInst = new MeshInstance;!
        m_pRigidBody = new RigidBody;!
        m_pAnimController = new AnimationController(*m_pMeshInst);!
        // Construct vehicle-specific components!
        m_pChassis = new Chassis(*this, *m_pAnimController);!
        m_pEngine = new Engine(*this);!
    }!
    ~Vehicle() {!
        // Only need to destroy vehicle-specific components!
        delete m_pChassis;!
        delete m_pEngine;!
    }!
};!



Example properties 

!   “Hub” class owns its components (it manages their 
lifetimes, i.e. creates and destroys them) 

!   How does it know which components to create? 
!   In this simple case, the GameObject class has pointers to 

all possible components, initialized to NULL 
!   Only creates needed components for a given derived class 
!   Destructor cleans up all possible components for 

convenience 
!   All optional add-on features for derived classes are in 

component classes 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 



More flexible (and complex) alternative 

!   Root GameObject 
contains a linked 
list of generic 
components 

!   Derive specific 
components from 
the component 
base class 

!   Allows arbitrary 
number of 
instances and types 
of components 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 

GameObject 

Transform 

RigidBody 

AnimationController 

MeshInstance 

Component 
+GetType() 
+isType() 
+ReceiveEvent() 
+Update() 



Why not get rid of GameObject? 

!   If a GameObject instance becomes just an empty container of pointers 
to components with an object ID, why not just get rid of the class 
entirely? 

!   Create a component for a game object by giving the component class 
instance for that object the object’s unique ID. 

!   Components logically grouped by an ID form a “game object” 
!   Need fast component lookup by ID 
!   Use factory classes to create components for each game object type 
!   Or, preferably use a “data driven” model to read a text file that defines 

object types 
!   How about inter-object communication?  How do you send a message 

to an “object” and get the proper response? 
! Know a priori which component gets a given message 
! Multicast to all of the components of an object 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 



Property-centric Architectures 

!   Think in terms of properties (attributes) of objects rather 
than in terms of objects 

!   For each property, build a table containing that property’s 
values keyed by object ID 

!   Now you get something like a relational database 
! Each property is like a column in a database table whose primary 

key is the object ID 

!   Where are the object’s behaviors defined? 
! Each type of property can be implemented as a property class 
! Do it with scripts, have one of an object’s properties by ScriptID 
! Scripts can also be the target of messages 
 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 



Pros and cons 

!   Pros 
! More memory-efficient 

!  Only store properties in use, no unused data members in objects 
! Easier to construct in a data-driven way 

!  Define new attributes with scripts, less recoding of class definitions 
! Can be more cache-friendly 

!  Data tables loaded into contiguous locations in cache 
! Struct of arrays (rather than array of structs) principle 

!   Cons 
! Hard to enforce relationships among properties 
! Harder to implement large-scale behaviors if they’re composed of 

scattered little pieces of fine-grained behavior 
! Harder to debug, can’t just put a game object into a watch window in the 

debugger and see what happens to it. 

University of Texas at Austin                          CS 378 – Game Technology                                Don Fussell 


