CS 378: Computer Game Technology

3D Engines and Scene Graphs Spring 2012

Representation

- We can represent a point, $\mathbf{p}=(\mathrm{x}, \mathrm{y})$, in the plane
- as a column vector $\left[\begin{array}{l}x \\ y\end{array}\right]$
as a row vector

Representation, cont.

- We can represent a 2-D transformation \mathbf{M} by a matrix

$$
\mathbf{M}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- If \mathbf{p} is a column vector, M goes on the left: $\mathbf{p}^{\prime}=\mathbf{M p}$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- If \mathbf{p} is a row vector, M^{T} goes on the right: $\mathbf{p}^{\prime}=\mathbf{p} \mathbf{M}^{\mathbf{T}}$

$$
\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

■ We will use column vectors.

Two-dimensional transformations

- Here's all you get with a 2×2 transformation matrix \mathbf{M} :

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- So: $\quad x^{\prime}=a x+b y$

$$
y^{\prime}=c x+d y
$$

- We will develop some intimacy with the elements $a, b, c, d \ldots$

Identity

- Suppose we choose $a=d=1, b=c=0$:
- Gives the identity matrix:

- Doesn't move the points at all

Scaling

- Suppose $b=c=0$, but let a and d take on any positive value:
- Gives a scaling matrix: $\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$
- Provides differential (non-uniform) scaling in x and y :

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=d y
\end{aligned}
$$

Reflection

- Suppose $b=c=0$, but let either a or d go negative.
- Examples:

Shear

- Now leave $a=d=1$ and experiment with b
- The matrix

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]} \\
& x^{\prime}=x+b y \\
& y^{\prime}=y
\end{aligned}
$$

Effect on unit square

- Let's see how a general 2×2 transformation \mathbf{M} affects the unit square:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
\mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{s}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{p}^{\prime} & \mathbf{q}^{\prime} & \mathbf{r}^{\prime} & \mathbf{s}^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & a & a+b & b \\
0 & c & c+d & d
\end{array}\right]}
\end{aligned}
$$

Effect on unit square, cont.

■ Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x - and y-scaling
- b and c give x - and y-shearing

Rotation

- From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]}
\end{aligned}
$$

Thus

$$
M_{R}=R(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Linear transformations

- The unit square observations also tell us the 2×2 matrix transformation implies that we are representing a point in a new coordinate system:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M} \mathbf{p} \\
& =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =x \cdot \mathbf{u}+y \cdot \mathbf{v}
\end{aligned}
$$

- where $\mathbf{u}=[a c]^{\mathrm{T}}$ and $\mathbf{v}=\left[\begin{array}{ll}b & d\end{array}\right]^{\mathrm{T}}$ are vectors that define a new basis for a linear space.
- The transformation to this new basis (a.k.a., change of basis) is a linear transformation.

Limitations of the 2×2 matrix

- A 2×2 linear transformation matrix allows
- Scaling
- Rotation
- Reflection
- Shearing
- Q: What important operation does that leave out?

Affine transformations

- In order to incorporate the idea that both the basis and the origin can change, we augment the linear space \mathbf{u}, \mathbf{v} with an origin \mathbf{t}.
- Note that while \mathbf{u} and \mathbf{v} are basis vectors, the origin \mathbf{t} is a point.
- We call \mathbf{u}, \mathbf{v}, and \mathbf{t} (basis and origin) a frame for an affine space.
- Then, we can represent a change of frame as:

$$
\mathbf{p}^{\prime}=x \cdot \mathbf{u}+y \cdot \mathbf{v}+\mathbf{t}
$$

- This change of frame is also known as an affine transformation.
- How do we write an affine transformation with matrices?

Homogeneous Coordinates

- To represent transformations among affine frames, we can loft the problem up into 3 -space, adding a third component to every point:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M} \mathbf{p} \\
& =\left[\begin{array}{lll}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{t}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =x \cdot \mathbf{u}+y \cdot \mathbf{v}+1 \cdot \mathbf{t}
\end{aligned}
$$

- Note that $\left[\begin{array}{lll}a & c & 0\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{ll}b & d\end{array}\right]^{\mathrm{T}}$ represent vectors and $\left[\begin{array}{lll}t_{x} & t_{y} & 1\end{array}\right]^{\mathrm{T}},\left[\begin{array}{ll}x & y\end{array} 1\right]^{\mathrm{T}}$ and $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right]^{\mathrm{T}}$ represent points.

Homogeneous coordinates

This allows us to perform translation as well as the linear transformations as a matrix operation:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M}_{\mathrm{T}} \mathbf{p} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right] } & =\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
x^{\prime} & =x+t_{x} \\
y^{\prime} & =y+t_{y}
\end{aligned}
$$

Rotation about arbitrary points
Until now, we have only considered rotation about the origin.
With homogeneous coordinates, you can specify a rotation, $\mathbf{R}_{\mathbf{q}}$, about any point $\mathbf{q}=\left[q_{x} q_{y} 1\right]^{\top}$ with a matrix:

1. Translate \mathbf{q} to origin
2. Rotate
3. Translate back

Line up the matrices for these step in right to left order and multiply.
Note: Transformation order is important!!

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.
For example, scaling:

Translation in 3D

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation in 3D

Rotation now has more possibilities in 3D:

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) & 0 \\
0 & \sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{cccc}
\cos (\theta) & 0 & \sin (\theta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\theta) & 0 & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 \\
\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Shearing in 3D

- Shearing is also more complicated. Here is one example:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & b & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
z
\end{array}\right]
$$

- We call this a shear with respect to the x-z plane.

