CS 378: Computer Game Technology

Basic Rendering Pipeline and Shading
Spring 2012
Recall the standard graphics pipeline:
Normal Vectors

- The intensity of a surface depends on its orientation with respect to the light and the viewer
 - CDs are an extreme example
- The surface normal vector describes the orientation of the surface at a point
 - Mathematically: Vector that is perpendicular to the tangent plane of the surface
 - What’s the problem with this definition?
 - Just “the normal vector” or “the normal”
- Will use N to denote
Local Shading Models

- Local shading models provide a way to determine the intensity and color of a point on a surface
 - The models are local because they don’t consider other objects at all
 - We use them because they are fast and simple to compute
 - They do not require knowledge of the entire scene, only the current piece of surface
Local Shading Models (Watt 6.2)

- What they capture:
 - Direct illumination from light sources
 - Diffuse and Specular components
 - (Very) Approximate effects of global lighting

- What they don’t do:
 - Shadows
 - Mirrors
 - Refraction
 - Lots of other stuff …
“Standard” Lighting Model

- Consists of several simple terms linearly combined:
 - Diffuse component for the amount of incoming light reflected equally in all directions
 - Specular component for the amount of light reflected in a mirror-like fashion
 - Ambient term to approximate light arriving via other surfaces
Diffuse Illumination

- Incoming light, I_i, from direction L, is reflected equally in all directions $k_d I_i (L \cdot N)$
 - No dependence on viewing direction

- Amount of light reflected depends on:
 - Angle of surface with respect to light source
 - Actually, determines how much light is collected by the surface, to then be reflected
 - Diffuse reflectance coefficient of the surface, k_d

- Don’t want to illuminate back side. Use

\[k_d I_i \max(L \cdot N,0) \]
Diffuse Example

Where is the light source?
Specular Reflection (Phong Model)

- Incoming light is reflected primarily in the mirror direction \(\mathbf{R} \)
 - Perceived intensity depends on the relationship between the viewing direction \(\mathbf{V} \) and the mirror direction \(\mathbf{R} \)
 - Bright spot is called a specular highlight

- Intensity controlled by:
 - The specular reflectance coefficient \(k_s \)
 - The parameter \(n \) controls the apparent size of the specular highlight
 - Higher \(n \), smaller highlight

\[
k_s I_i (\mathbf{R} \cdot \mathbf{V})^n
\]
Specular Example

Plus Specular Highlight
Putting It Together

- Global ambient intensity, I_a:
 - Gross approximation to light bouncing around of all other surfaces
 - Modulated by ambient reflectance k_a
- Emitted term I_e – no reflected light, comes from object
- Just sum all the terms
- If there are multiple lights, sum contributions from each light
- Several variations, and approximations …

$$I = I_e + k_a I_a + \sum_{\text{lights } i} I_i \left(k_d (L_i \cdot N) + k_s (R_i \cdot N)^n \right)$$
Flat shading

- Compute shading at a representative point and apply to whole polygon
 - OpenGL uses one of the vertices

Advantages:
- Fast - one shading value per polygon

Disadvantages:
- Inaccurate
- Discontinuities at polygon boundaries
Gourand Shading

- Shade each vertex with its own location and normal
- Linearly interpolate across the face

Advantages:
- Fast - incremental calculations when rasterizing
- Much smoother - use one normal per shared vertex to get continuity between faces

Disadvantages:
- Specular highlights get lost
Phong Interpolation

- Interpolate normals across faces
- Shade each pixel

Advantages:
- High quality, narrow specular highlights

Disadvantages:
- Expensive
- Still an approximation for most surfaces

- Not to be confused with Phong’s shading model