
1

1

6. Ray Tracing

2

Reading

Required:

Watt, sections 1.3-1.4, 12.1-12.5.1.
T. Whitted. An improved illumination model for
shaded display. Communications of the ACM
23(6), 343-349, 1980. [In the reader.]

Further reading:

A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]
K. Turkowski, “Properties of Surface Normal
Transformations,” Graphics Gems, 1990, pp.
539-547. [In the reader.]

2

3

Geometric optics

Modern theories of light treat it as both a wave
and a particle.

We will take a combined and somewhat simpler
view of light – the view of geometric optics.

Here are the rules of geometric optics:

Light is a flow of photons with wavelengths.
We'll call these flows “light rays.”
Light rays travel in straight lines in free
space.
Light rays do not interfere with each other as
they cross.
Light rays obey the laws of reflection and
refraction.
Light rays travel form the light sources to the
eye, but the physics is invariant under path
reversal (reciprocity).

4

Synthetic pinhole camera

The most common imaging model in graphics is
the synthetic pinhole camera: light rays are
collected through an infinitesimally small hole and
recorded on an image plane.

For convenience, the image plane is usually
placed in front of the camera, giving a non-
inverted 2D projection (image).

Viewing rays emanate from the center of
projection (COP) at the center of the lens (or
pinhole).

The image of an object point P is at the
intersection of the viewing ray through P and the
image plane.

3

5

Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward ray
tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward ray
tracing)

We will generally follow rays from the eye into the
scene.

6

Precursors to ray tracing

Local illumination

Cast one eye ray, then shade according to
light

Appel (1968)

Cast one eye ray + one ray to light

4

7

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the
graphics community.

Combines eye ray tracing + rays to light
Recursively traces rays

Algorithm:

1. For each pixel, trace a primary ray in direction V to
the first visible surface.

2. For each intersection, trace secondary rays:

Shadow rays in directions Li to light sources
Reflected ray in direction R.
Refracted ray or transmitted ray in direction T.

8

Whitted algorithm (cont'd)

Let's look at this in stages:

5

9

Shading

A ray is defined by an origin P and a unit direction
d and is parameterized by t:

P + td

Let I(P, d) be the intensity seen along that ray.
Then:

I(P, d) = Idirect + Ireflected + Itransmitted

where

Idirect is computed from the Phong model
Ireflected = kr I (Q, R)
Itransmitted = ktI (Q, T)

Typically, we set kr = ks and kt = 1 – ks . 10

Reflection and transmission

Law of reflection:

θi = θr

Snell's law of refraction:

ηi sinθI = ηt sin θt

where ηi , ηt are indices of refraction.

6

11

Total Internal Reflection

The equation for the angle of refraction can be
computed from Snell's law:

What happens when ηi > ηt?

When θt is exactly 90°, we say that θI has achieved
the “critical angle” θc .

For θI > θc , no rays are transmitted, and only
reflection occurs, a phenomenon known as “total
internal reflection” or TIR.

12

Error in Watt!!

In order to compute the refracted direction, it is
useful to compute the cosine of the angle of
refraction in terms of the incident angle and the
ratio of the indices of refraction.

On page 24 of Watt, he develops a formula for
computing this cosine. Notationally, he uses µ
instead of η for the index of refraction in the text,
but uses η in Figure 1.16(!?), and the angle of
incidence is φ and the angle of refraction is θ.

Unfortunately, he makes a grave error in
computing cosθ. He also has some errors in the
figures on the same page.

Consult the errata for important corrections!

7

13

Ray-tracing pseudocode

We build a ray traced image by casting rays through
each of the pixels.

function traceImage (scene):
for each pixel (i,j) in image

S = pixelToWorld(i,j)
P = COP
d = (S - P)/|| S – P||
I(i,j) = traceRay(scene, P, d)

end for
end function

14

Ray-tracing pseudocode, cont’d

function traceRay(scene, P, d):
(t, N, mtrl) ← scene.intersect (P, d)
Q ray (P, d) evaluated at t
I = shade(q, N, mtrl, scene)
R = reflectDirection(N, -d)

I ← I + mtrl.kr ∗ traceRay(scene, Q, R)

if ray is entering object then
n_i = index_of_air
n_t = mtrl.index

else
n_i = mtrl.index
n_t = index_of_air

if (mtrl.k_t > 0 and notTIR (n_i, n_t, N, -d)) then
T = refractDirection (n_i, n_t, N, -d)
I ← I + mtrl.kt ∗ traceRay(scene, Q, T)

end if
return I

end function

8

15

Terminating recursion

Q: How do you bottom out of recursive ray
tracing?

Possibilities:

16

Shading pseudocode
Next, we need to calculate the color returned by the
shade function.

function shade(mtrl, scene, Q, N, d):
I ← mtrl.ke + mtrl. ka * scene->Ia
for each light source do:

atten = -> distanceAttenuation(Q) *
-> shadowAttenuation(scene, Q)

I ← I + atten*(diffuse term + spec term)
end for
return I

end function

9

17

Shadow attenuation
Computing a shadow can be as simple as checking
to see if a ray makes it to the light source.
For a point light source:

function PointLight::shadowAttenuation(scene, P)
d = (.position - P).normalize()

(t, N, mtrl) ← scene.intersect(P, d)
Q ← ray(t)
if Q is before the light source then:

atten = 0
else

atten = 1
end if
return atten

end function

Q: What if there are transparent objects along a path
to the light source?

18

Ray-plane intersection

We can write the equation of a plane as:

The coefficients a, b, and c form a vector that is
normal to the plane, n = [a b c]T. Thus, we can re-
write the plane equation as:

We can solve for the intersection parameter (and
thus the point):

0ax by cz d+ + + =

10

19

Ray-triangle intersection

To intersect with a triangle, we first solve for the
equation of its supporting plane:

Then, we need to decide if the point is inside or
outside of the triangle.

Solution 1: compute barycentric coordinates from
3D points.

What do you do with the barycentric coordinates?

20

Ray-triangle intersection
Solution 2: project down a dimension and compute
barycentric coordinates from 2D points.

Why is solution 2 possible? Why is it legal? Why
is it desirable? Which axis should you “project
away”?

11

21

Interpolating vertex properties
The barycentric coordinates can also be used to
interpolate vertex properties such as:

material properties
texture coordinates
normals

For example:

Interpolating normals, known as Phong
interpolation, gives triangle meshes a smooth
shading appearance. (Note: don’t forget to
normalize interpolated normals.)

α β γ= + +() () () ()d d d dk Q k A k B k C

22

Epsilons
Due to finite precision arithmetic, we do not
always get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

12

23

Intersecting with xformed
geometry

In general, objects will be placed using
transformations. What if the object being
intersected were transformed by a matrix M?

Apply M-1 to the ray first and intersect in object
(local) coordinates!

24

Intersecting with xformed
geometry

The intersected normal is in object (local)
coordinates. How do we transform it to world
coordinates?

