
1

1

10. Hierarchical Modeling

2

2

Reading

Angel, sections 9.1 - 9.6
[reader pp. 169-185]

OpenGL Programming Guide, chapter 3
• Focus especially on section titled

“Modelling Transformations”.

3

3

Symbols and instances

Most graphics APIs support a few geometric
primitives:

spheres

cubes

triangles

These symbols are instanced using an instance
transformation.

4

4

Use a series of transformations

Ultimately, a particular geometric instance is
transformed by one combined transformation
matrix:

But it’s convenient to build this single matrix
from a series of simpler transformations:

We have to be careful about how we think
about composing these transformations.

(Mathematical reason: Transformation matrices
don’t commute under matrix multiplication)

5

5

Two ways to compose xforms

Method #1:
Express every transformation with respect
to global coordinate system:

Method #2:
Express every transformation with respect
to a “parent” coordinate system created by
earlier transformations:

6

6

#1: Xform for global coordinates

FinalPosition = M1 * M2 * … * Mn * InitialPosition

Apply First

Apply Last

Note: Positions are column vectors:
1

x
y
z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

7

7

#2: Xform for coordinate system

FinalPosition = M1 * M2 * … * Mn * InitialPosition

Apply First

Apply Last

8

8

Xform direction for coord. sys

FinalPosition = M1 * M2 * … * Mn * InitialPosition

Translate/Rotate:
FROM previous coord sys
TO new one

with transformation expressed in
the ‘previous’ coordinate system.

G
lo

b
al

 c
oo

rd
sy

s

C
oo

rd
sy

s
re

su
lt

in
g

fr
om

 M
1.

L
oc

al
 c

oo
rd

sy
s,

 r
es

u
lt

in
g

fr
om

 M
1

*
M

2
*

…
*

M
n

[[[

C
oo

rd
sy

s
re

su
lt

in
g

fr
om

 M
 *

 M
2

9

9

Connecting primitives

10

10

3D Example: A robot arm

Consider this robot arm with 3 degrees of
freedom:

Base rotates about its vertical axis by θ
Upper arm rotates in its xy-plane by φ
Lower arm rotates in its xy-plane by ψ

Q: What matrix do we use to transform the base?

Q: What matrix for the upper arm?

Q: What matrix for the lower arm?

h1

h2
h3

Base

Upper arm

Lower arm

11

11

Robot arm implementation

The robot arm can be displayed by keeping a global
matrix and computing it at each step:

Matrix M_model;

main()

{

. . .

robot_arm();

. . .

}

robot_arm()

{

M_model = R_y(theta);

base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)

*T(0,h2,0)*R_z(psi);

lower_arm();

}

Do the matrix computations seem wasteful?

12

12

Instead of recalculating the global matrix each time, we
can just update it in place by concatenating matrices on
the right:

Matrix M_model;

main()

{

. . .

M_model = Identity();

robot_arm();

. . .

}

robot_arm()

{

M_model *= R_y(theta);

base();

M_model *= T(0,h1,0)*R_z(phi);

upper_arm();

M_model *= T(0,h2,0)*R_z(psi);

lower_arm();

}

Robot arm implementation,
better

13

13

OpenGL maintains a global state matrix called the
model-view matrix, which is updated by
concatenating matrices on the right.

main()

{

. . .

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

robot_arm();

. . .

}

robot_arm()

{

glRotatef(theta, 0.0, 1.0, 0.0);

base();

glTranslatef(0.0, h1, 0.0);

glRotatef(phi, 0.0, 0.0, 1.0);

lower_arm();

glTranslatef(0.0, h2, 0.0);

glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm();

}

Robot arm implementation,
OpenGL

14

14

Hierarchical modeling

Hierarchical models can be composed of
instances using trees or DAGs:

edges contain geometric transformations

nodes contain geometry (and possibly
drawing attributes)

How might we
draw the tree for
the robot arm?

15

15

A complex example: human
figure

Q: What’s the most sensible way to traverse this
tree?

16

16

Human figure implementation,
OpenGL

figure()

{

torso();

glPushMatrix();

glTranslate(...);

glRotate(...);

head();

glPopMatrix();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_upper_arm();

glPushMatrix();

glTranslate(...);

glRotate(...);

left_lower_arm();

glPopMatrix();

glPopMatrix();

. . .

}

17

17

Animation

The above examples are called articulated
models:

rigid parts

connected by joints

They can be animated by specifying the joint
angles (or other display parameters) as functions
of time.

18

18

Key-frame animation

The most common method for character
animation in production is key-frame animation.

Each joint specified at various key frames
(not necessarily the same as other joints)

System does interpolation or in-betweening

Doing this well requires:

A way of smoothly interpolating key frames:
splines

A good interactive system

A lot of skill on the part of the animator

19

19

Scene graphs

The idea of hierarchical modeling can be
extended to an entire scene, encompassing:

many different objects

lights

camera position

This is called a scene tree or scene graph.

Scene

Camera

Light1
Light2

Object1

Object2 Object3

