Parametric surfaces
Reading

- **Required:**
 - Watt, 2.1.4, 3.4-3.5.

- **Optional**
 - Watt, 3.6.
Mathematical surface representations

- Explicit \(z = f(x,y) \) (a.k.a., a “height field”)
 - what if the curve isn’t a function, like a sphere?

- Implicit \(g(x,y,z) = 0 \)

- Parametric \(S(u,v) = (x(u,v), y(u,v), z(u,v)) \)
 - For the sphere:
 \[
 x(u,v) = r \cos 2\pi v \sin \pi u \\
y(u,v) = r \sin 2\pi v \sin \pi u \\
z(u,v) = r \cos \pi u
 \]

As with curves, we’ll focus on parametric surfaces.
Surfaces of revolution

- Idea: rotate a 2D **profile curve** around an axis.
- What kinds of shapes can you model this way?
- **Find:** A surface $S(u,v)$ which is radius(z) rotated about the z axis.
- **Solution:**

 $$x = \text{radius}(u) \cos(v)$$
 $$y = \text{radius}(u) \sin(v)$$
 $$z = u$$

 $u \in [z_{\text{min}}, z_{\text{max}}]$, \quad $v \in [0, 2\pi]$
Extruded surfaces

- **Given:** A curve $C(u)$ in the xy-plane:

 $$C(u) = \begin{bmatrix} c_x(u) \\ c_y(u) \\ 0 \\ 1 \end{bmatrix}$$

- **Find:** A surface $S(u,v)$ which is $C(u)$ extruded along the z axis.

- **Solution:**

 $$x = c_x(u)$$
 $$y = c_y(u) \quad u \in [u_{\text{min}}, u_{\text{max}}], \quad v \in [z_{\text{min}}, z_{\text{max}}]$$
 $$z = v$$
General sweep surfaces

- The **surface of revolution** is a special case of a swept surface.
- Idea: Trace out surface $S(u,v)$ by moving a **profile curve** $C(u)$ along a **trajectory curve** $T(v)$.

More specifically:
- Suppose that $C(u)$ lies in an (x_c,y_c) coordinate system with origin O_c.
- For every point along $T(v)$, lay $C(u)$ so that O_c coincides with $T(v)$.

The big issue: How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. **Fixed** (or **static**): Just translate O_c along $T(v)$.

2. **Moving**. Use the **Frenet frame** of $T(v)$.
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.
Frenet frames

- Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

- To get a 3D coordinate system, we need 3 independent direction vectors.

 $$ t(v) = \text{normalize}[T'(v)] $$
 $$ b(v) = \text{normalize}[T'(v) \times T''(v)] $$
 $$ n(v) = b(v) \times t(v) $$

- As we move along $T(v)$, the Frenet frame (t,b,n) varies smoothly.
Frenet swept surfaces

- Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:
 - Put $C(u)$ in the normal plane.
 - Place O_c on $T(v)$.
 - Align x_c for $C(u)$ with b.
 - Align y_c for $C(u)$ with $-n$.

- If $T(v)$ is a circle, you get a surface of revolution exactly!
- What happens at inflection points, i.e., where curvature goes to zero?
Variations

- Several variations are possible:
 - Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
 - Morph $C(u)$ into some other curve $\overline{C}(u)$ as it moves along $T(v)$.
 - …
Generalizing from Parametric Curves

- Flashback to curves:
 We directly defined parametric function $f(u)$, as a cubic polynomial.

- Why a cubic polynomial?
 - minimum degree for C^2 continuity
 - “well behaved”

- Can we do something similar for surfaces?
 Initially, just think of a height field: height = $f(u,v)$.
Cubic patches

Cubics curves are good… Let’s extend them in the obvious way to surfaces:

\[
\begin{align*}
 f(u) & = 1 + u + u^2 + u^3 \\
 g(v) & = 1 + v + v^2 + v^3 \\
 f(u)g(v) & = 1 + u + v + uv + u^2 + v^2 + uv^2 + vu^2 + \ldots + u^3v^3
\end{align*}
\]

16 terms in this function.

Let’s allow the user to pick the coefficient for each of them:

\[
f(u)g(v) = c_0 + c_1u + c_2v + \ldots + c_{15}u^3v^3
\]
Interesting properties

\[f(u, v) = c_0 + c_1u + c_2v + \ldots + c_{15}u^3v^3 \]

What happens if I pick a particular ‘\(u \)?’

\[f(u, v) = \]

What happens if I pick a particular ‘\(v \)?’

\[f(u, v) = \]

What do these look like graphically on a patch?
Use control points

- As before, directly manipulating coefficients is not intuitive.
 - Instead, directly manipulate control points.
 - These control points indirectly set the coefficients, using approaches like those we used for curves.
Let’s walk through the steps:

- Which control points are interpolated by the surface?
Matrix form of Bézier surfaces

- Recall that Bézier curves can be written in terms of the Bernstein polynomials:

\[p(u) = \sum_{i=0}^{n} B_{i,n}(u) \ p_i \]

- They can also be written in a matrix form:

\[
p(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = UM_B P
\]

- Tensor product surfaces can be written out similarly:

\[
p(u) = \sum_{i=0}^{n} \sum_{j=0}^{n} B_{i,n}(u) B_{j,n}(v) \ p_{i,j}
\]

\[= UM_B P_M^T V^T\]
As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^2 continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.
Which B-spline control points are interpolated by the surface?
Continuity for surfaces

Continuity is more complex for surfaces than curves. Must examine partial derivatives at patch boundaries.

G^1 continuity refers to tangent plane.
Trimmed NURBS surfaces

- Uniform B-spline surfaces are a special case of NURBS surfaces.
- Sometimes, we want to have control over which parts of a NURBS surface get drawn.
- For example:

 We can do this by trimming the u-v domain.
 - Define a closed curve in the u-v domain (a trim curve)
 - Do not draw the surface points inside of this curve.
- It’s really hard to maintain continuity in these regions, especially while animating.
Next class: Subdivision surfaces

Topic:
How do we extend ideas from subdivision curves to the problem of representing surfaces?

Recommended Reading: