Hierarchical Modeling

Reading

■Angel, sections 9.1-9.6 [reader pp. 169-185]
■OpenGL Programming Guide, chapter 3
\square Focus especially on section titled
"Modelling Transformations".

Hierarchical Modeling

■ Consider a moving automobile, with 4 wheels attached to the chassis, and lug nuts attached to each wheel:

Symbols and instances

■ Most graphics APIs support a few geometric primitives:
■ spheres

- cubes
- triangles
\square These symbols are instanced using an instance transformation.

Use a series of transformations

- Ultimately, a particular geometric instance is transformed by one combined transformation matrix:

- But it's convenient to build this single matrix from a series of simpler transformations:

- We have to be careful about how we think about composing these transformations.
(Mathematical reason: Transformation matrices don't commute under matrix multiplication)

Two ways to compose xforms

- Method \#1:

Express every transformation with respect to global coordinate system:

- Method \#2:

Express every transformation with respect to a "parent" coordinate system created by earlier transformations:

The goal of this second approach is to build a series of transforms. Once they exist, we can think of points as being "processed" by these xforms as in Method \#1

\#1: Xform for global coordinates

\square FinalPosition $=\mathrm{M}_{1} * \mathrm{M}_{2} * \ldots * \mathrm{M}_{\mathrm{n}} *$ InitialPosition
Note: Positions are column vectors: $\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

\#2: Xform for coordinate system

FinalPosition $=M_{1} * M_{2} * \ldots * M_{n} *$ InitialPosition

Xform direction for coord. sys

FinalPosition $=\mathrm{M}_{1} * \mathrm{M}_{2} * \ldots * \mathrm{M}_{\mathrm{n}} *$ InitialPosition
Translate/Rotate:
FROM previous coord sys
TO new one
with transformation expressed in
the 'previous' coordinate system.

Connecting primitives

3D Example: A robot arm

- Consider this robot arm with 3 degrees of freedom:
- Base rotates about its vertical axis by θ
- Upper arm rotates in its $x y$-plane by ϕ
- Lower arm rotates in its $x y$-plane by ψ

■ Q: What matrix do we use to transform the base?

- Q: What matrix for the upper arm?

■ Q: What matrix for the lower arm?

Robot arm implementation

- The robot arm can be displayed by keeping a global matrix and computing it at each step:

```
Matrix M_model;
main()
{
    robot_arm();
}
robot_arm()
{
    M_model = R_y(theta);
    base();
    M_model = R_y(theta)*T(0,h1,0)*R_z(phi);
    upper_arm();
    M_model = R_y(theta)*T(0,h1,0)*R_z(phi)
                            *T(0,h2,0)*R_z(psi);
    lower_arm();
}
```

Do the matrix computations seem wasteful?

Robot arm implementation, better

- Instead of recalculating the global matrix each time, we can just update it in place by concatenating matrices on the right:

```
Matrix M_model;
main()
{
    M_model = Identity();
    robot_arm();
}
robot_arm()
{
    M_model *= R_y(theta);
    base();
    M_model *= T(0,h1,0)*R_z(phi);
    upper_arm();
    M_model *= T(0,h2,0)*R_z(psi);
    lower_arm();
}
```


Robot arm implementation, OpenGL

- OpenGL maintains a global state matrix called the model-view matrix, which is updated by concatenating matrices on the right.

```
main()
{
        glMatrixMode( GL_MODELVIEW );
        glLoadIdentity();
        robot_arm();
}
robot_arm()
{
        glRotatef( theta, 0.0, 1.0, 0.0 );
        base();
        glTranslatef( 0.0, h1, 0.0 );
        glRotatef( phi, 0.0, 0.0, 1.0 );
        lower_arm();
        glTranslatef( 0.0, h2, 0.0 );
        glRotatef( psi, 0.0, 0.0, 1.0 );
        upper_arm();
}
```


Hierarchical modeling

\square Hierarchical models can be composed of instances using trees or DAGs:

$■$ edges contain geometric transformations
\square nodes contain geometry (and possibly drawing attributes)

How might we draw the tree for the robot arm?

A complex example: human figure

Q: What's the most sensible way to traverse this tree?

Human figure implementation, OpenGL

```
figure()
{
    torso();
    glPushMatrix();
            glTranslate( ... );
            glRotate( ... );
            head();
    glPopMatrix();
    glPushMatrix();
            glTranslate( ... );
            glRotate( ... );
            left_upper_arm();
            glPushMatrix();
                glTranslate( ... );
                    glRotate( ... );
                    left_lower_arm();
            glPopMatrix();
    glPopMatrix();
        . . .
}
```


Animation

\square The above examples are called articulated models:

■rigid parts
■connected by joints

- They can be animated by specifying the joint angles (or other display parameters) as functions of time.

Key-frame animation

- The most common method for character animation in production is key-frame animation.
■ Each joint specified at various key frames (not necessarily the same as other joints)
- System does interpolation or in-betweening

■ Doing this well requires:

- A way of smoothly interpolating key frames: splines
- A good interactive system
- A lot of skill on the part of the animator

Scene graphs

\square The idea of hierarchical modeling can be extended to an entire scene, encompassing:
■many different objects
■lights

- camera position
- This is called a scene tree or scene graph.

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell

