
University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell

Hierarchical Modeling

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 2

Reading

Angel, sections 9.1 - 9.6
[reader pp. 169-185]
OpenGL Programming Guide, chapter 3

Focus especially on section titled
“Modelling Transformations”.

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 3

Hierarchical Modeling

Consider a moving automobile, with 4
wheels attached to the chassis, and lug nuts
attached to each wheel:

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 4

Symbols and instances

Most graphics APIs support a few geometric
primitives:

spheres
cubes
triangles

These symbols are instanced using an instance
transformation.

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 5

Use a series of transformations
Ultimately, a particular geometric instance is
transformed by one combined transformation matrix:

But it’s convenient to build this single matrix
from a series of simpler transformations:

We have to be careful about how we think
about composing these transformations.

(Mathematical reason: Transformation matrices
 don’t commute under matrix multiplication)

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 6

Two ways to compose xforms
Method #1:
Express every transformation with respect
to global coordinate system:

Method #2:
Express every transformation with respect
to a “parent” coordinate system created by
earlier transformations:

The goal of this second approach
is to build a series of transforms.
Once they exist, we can think of
points as being “processed” by
these xforms as in Method #1

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 7

#1: Xform for global coordinates

FinalPosition = M1 * M2 * … * Mn * InitialPosition

Apply First

Apply Last

Note: Positions are column vectors:
1

x

y

z

! "
$
$
$
$
$% &

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 8

#2: Xform for coordinate system

FinalPosition = M1 * M2 * … * Mn * InitialPosition

Apply First

Apply Last

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 9

Xform direction for coord. sys

FinalPosition = M1 * M2 * … * Mn * InitialPosition
Translate/Rotate:
 FROM previous coord sys
 TO new one
 with transformation expressed in
 the ‘previous’ coordinate system.

G
lo

ba
l c

oo
rd

 sy
s

C
oo

rd
 sy

s r
es

ul
tin

g
fr

om
 M

1.

Lo
ca

l c
oo

rd
 sy

s,
re

su
lti

ng
fr

om
 M

1
*

M
2

*
…

 *
 M

n

[[[[

C
oo

rd
 sy

s r
es

ul
tin

g
fr

om
 M

 *
 M

2

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 10

Connecting primitives

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 11

3D Example: A robot arm
Consider this robot arm with 3 degrees of freedom:

Base rotates about its vertical axis by θ
Upper arm rotates in its xy-plane by φ
Lower arm rotates in its xy-plane by ψ

Q: What matrix do we use to transform the base?
Q: What matrix for the upper arm?
Q: What matrix for the lower arm?

h1
h2 h3Base

Upper arm
Lower arm

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 12

Robot arm implementation
The robot arm can be displayed by keeping a global matrix
and computing it at each step:

Matrix M_model;

main()

{

 . . .

 robot_arm();

 . . .

}

robot_arm()

{

 M_model = R_y(theta);

 base();

 M_model = R_y(theta)*T(0,h1,0)*R_z(phi);

 upper_arm();

 M_model = R_y(theta)*T(0,h1,0)*R_z(phi)

 *T(0,h2,0)*R_z(psi);

 lower_arm();

}

Do the matrix computations seem wasteful?

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 13

Instead of recalculating the global matrix each time, we can just update
it in place by concatenating matrices on the right:

Matrix M_model;

main()

{

 . . .

 M_model = Identity();

 robot_arm();

 . . .

}

robot_arm()

{

 M_model *= R_y(theta);

 base();

 M_model *= T(0,h1,0)*R_z(phi);

 upper_arm();

 M_model *= T(0,h2,0)*R_z(psi);

 lower_arm();

}

Robot arm implementation, better

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 14

OpenGL maintains a global state matrix called the model-view
matrix, which is updated by concatenating matrices on the right.

main()
{
 . . .
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 robot_arm();
 . . .

}

robot_arm()

{

 glRotatef(theta, 0.0, 1.0, 0.0);

 base();

 glTranslatef(0.0, h1, 0.0);

 glRotatef(phi, 0.0, 0.0, 1.0);

 lower_arm();

 glTranslatef(0.0, h2, 0.0);

 glRotatef(psi, 0.0, 0.0, 1.0);

 upper_arm();

}

Robot arm implementation, OpenGL

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 15

Hierarchical modeling

Hierarchical models can be composed of instances
using trees or DAGs:

edges contain geometric transformations
nodes contain geometry (and possibly drawing
attributes)

How might we draw the
tree for the robot arm?

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 16

A complex example: human figure

Q: What’s the most sensible way to traverse this tree?

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 17

Human figure implementation, OpenGL
figure()

{

 torso();

 glPushMatrix();

 glTranslate(...);

 glRotate(...);

 head();

 glPopMatrix();

 glPushMatrix();

 glTranslate(...);

 glRotate(...);

 left_upper_arm();

 glPushMatrix();

 glTranslate(...);

 glRotate(...);

 left_lower_arm();

 glPopMatrix();

 glPopMatrix();

 . . .

}

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 18

Animation

The above examples are called articulated
models:

rigid parts
connected by joints

They can be animated by specifying the
joint angles (or other display parameters) as
functions of time.

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 19

Key-frame animation
The most common method for character animation in
production is key-frame animation.

Each joint specified at various key frames (not necessarily the
same as other joints)
System does interpolation or in-betweening

Doing this well requires:
A way of smoothly interpolating key frames: splines
A good interactive system
A lot of skill on the part of the animator

University of Texas at Austin CS384G - Computer Graphics Fall 2008 Don Fussell 20

Scene graphs
The idea of hierarchical modeling can be
extended to an entire scene, encompassing:

many different objects
lights
camera position

This is called a scene tree or scene graph.

Camera

Light1
Light2 Object2 Object3

Scene

Object1

