Sampling and Reconstruction

■ Required:

- ■Watt, Section 14.1
- Recommended:
 - Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill.
 - ■Don P. Mitchell and Arun N. Netravali, "Reconstruction Filters in Computer Computer Graphics," Computer Graphics, (Proceedings of SIGGRAPH 88). 22 (4), pp. 221-228, 1988.

What is an image?

- We can think of an **image** as a function, f, from R^2 to R:
 - $\blacksquare f(x, y)$ gives the intensity of a channel at position (x, y)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:

$$f: [a,b] \mathbf{x}[c,d] \rightarrow [0,1]$$

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

■ We'll focus in grayscale (scalar-valued) images for now.

Images as functions

Digital images

- In computer graphics, we usually create or operate on digital (discrete) images:
 - Sample the space on a regular grid
 - **Quantize** each sample (round to nearest integer)
- If our samples are Δ apart, we can write this as:

$$f[i,j] = \text{Quantize} \{ f(i \Delta, j \Delta) \}$$

Motivation: filtering and resizing

- What if we now want to:
 - ■smooth an image?
 - ■sharpen an image?
 - enlarge an image?
 - ■shrink an image?
- Before we try these operations, it's helpful to think about images in a more mathematical way...

Fourier transforms

- We can represent a function as a linear combination (weighted sum) of sines and cosines.
- We can think of a function in two complementary ways:
 - **Spatially** in the spatial domain
 - **Spectrally** in the **frequency domain**
- The **Fourier transform** and its inverse convert between these two domains:

Spatial domain
$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi sx}dx$$

$$f(x) = \int_{-\infty}^{\infty} F(s)e^{i2\pi sx}ds$$
Frequency domain

Fourier transforms (cont'd)

Spatial domain

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi sx}dx$$

$$f(x) = \int_{-\infty}^{\infty} F(s)e^{i2\pi sx}ds$$
Frequency domain

- Where do the sines and cosines come in?
- f(x) is usually a real signal, but F(s) is generally complex:

$$F(s) = \operatorname{Re}(s) - i\operatorname{Im}(s) = |F(s)|e^{-i2\pi s}$$

If f(x) is symmetric, i.e., f(x) = f(-x), then F(s) = Re(s). Why?

1D Fourier examples

2D Fourier transform

Spatial domain
$$F(s_x, s_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i2\pi s_x x} e^{-i2\pi s_y y} dx dy \longrightarrow Frequency domain$$

$$f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(s_x, s_y) e^{i2\pi s_x x} e^{i2\pi s_y y} ds_x ds_y \longrightarrow domain$$

Spatial domain

f(x,y)

Frequency domain

 $|F(s_x,s_y)|$

2D Fourier examples

Spatial

domain

f(x,y)

Convolution

- One of the most common methods for filtering a function is called **convolution**.
- In 1D, convolution is defined as:

$$g(x) = f(x) * h(x)$$

$$= \int_{-\infty}^{\infty} f(x')h(x - x')dx'$$

$$= \int_{-\infty}^{\infty} f(x')\hat{h}(x' - x)dx'$$

where
$$\hat{h}(x) = h(-x)$$

Convolution properties

- Convolution exhibits a number of basic, but important properties.
- Commutativity: a(x) * b(x) = b(x) * a(x)
- Associativity: [a(x)*b(x)]*c(x) = a(x)*[b(x)*c(x)]
- Linearity: $a(x) * [k \cdot b(x)] = k \cdot [a(x) * b(x)]$ a(x) * (b(x) + c(x)) = a(x) * b(x) + a(x) * c(x)

Convolution in 2D

■ In two dimensions, convolution becomes:

$$g(x,y) = f(x,y) * h(x,y)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x',y')h(x-x')(y-y')dx'dy'$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x',y')\hat{h}(x'-x)(y'-y)dx'dy'$$

where
$$\hat{h}(x,y) = h(-x,-y)$$

Convolution theorems

Convolution theorem: *Convolution* in the *spatial* domain is equivalent to *multiplication* in the *frequency* domain.

$$f * h \Leftrightarrow F \cdot H$$

Symmetric theorem: Convolution in the frequency domain is equivalent to multiplication in the spatial domain.

$$f \cdot h \Leftrightarrow F * H$$

Convolution theorems

Theorem
$$F(f * g) = F(f)F(g)$$

$$F(fg) = F(f) * F(g)$$

$$F^{-1}(F * G) = F^{-1}(F)F^{-1}(G)$$

$$F^{-1}(FG) = F^{-1}(F) * F^{-1}(G)$$

Proof (1)
$$F(f * g) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t')g(t - t')dt'e^{-i\omega t}dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t')g(t - t')e^{-i\omega t'}e^{-i\omega(t - t')}dtdt'$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t')g(t'')e^{-i\omega t'}e^{-i\omega t''}dt''dt'$$

$$= \int_{-\infty}^{\infty} f(t')e^{-i\omega t'}dt' \int_{-\infty}^{\infty} g(t'')e^{-i\omega t''}dt''$$

$$= F(f)F(g)$$

1D convolution theorem example

2D convolution theorem example

The delta function

- The **Dirac delta function**, $\delta(x)$, is a handy tool for sampling theory.
- It has zero width, infinite height, and unit area.
- It is usually drawn as:

Sifting and shifting

- For sampling, the delta function has two important properties.
- Sifting: $f(x)\delta(x-a) = f(a)\delta(x-a)$

Shifting: $f(x) * \delta(x - a) = f(x - a)$

The shah/comb function

- A string of delta functions is the key to sampling. The resulting function is called the **shah** or **comb** function: $III(x) = \sum_{i=1}^{\infty} \delta(x nT)$
- which looks like:

■ Amazingly, the Fourier transform of the shah function takes the same form:

III(s) =
$$\sum_{n=0}^{\infty} \delta(s - ns_0)$$
where $s_0 = 1/T$.

■ *Now*, we can talk about sampling.

- The Fourier spectrum gets *replicated* by spatial sampling!
- How do we recover the signal?

Sampling and reconstruction

Sampling and reconstruction in 2D

Sampling theorem

This result is known as the **Sampling Theorem** and is generally attributed to Claude Shannon (who discovered it in 1949) but was discovered earlier, independently by at least 4 others:

A signal can be reconstructed from its samples without loss of information, if the original signal has no energy in frequencies at or above ½ the sampling frequency.

For a given **bandlimited** function, the minimum rate at which it must be sampled is the **Nyquist frequency**.

Reconstruction filters

- The sinc filter, while "ideal", has two drawbacks:
 - It has large support (slow to compute)
 - It introduces ringing in practice
- We can choose from many other filters...

Cubic filters

Mitchell and Netravali (1988) experimented with cubic filters, reducing them all to the following form:

$$r(x) = \frac{1}{6} \begin{cases} (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) & |x| < 1 \\ ((-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) & 1 \le |x| < 2 \\ 0 & otherwise \end{cases}$$

- The choice of B or C trades off between being too blurry or having too much ringing. B=C=1/3 was their "visually best" choice.
- The resulting reconstruction filter is often called the "Mitchell filter."

Reconstruction filters in 2D

■ We can also perform reconstruction in 2D...

Sampling rate is too low

■ What if we go below the Nyquist frequency?

■ Anti-aliasing is the process of *removing* the frequencies

before they alias.

Anti-aliasing by analytic prefiltering

We can fill the "magic" box with analytic prefiltering of the signal:

■ Why may this not generally be possible?

Filtered downsampling

Alternatively, we can sample the image at a higher rate, and then filter that signal:

We can now sample the signal at a lower rate. The whole process is called filtered downsampling or supersampling and averaging down.

Practical upsampling

- When resampling a function (e.g., when resizing an image), you do not need to reconstruct the complete continuous function.
- For zooming in on a function, you need only use a reconstruction filter and evaluate as needed for each new sample.
- Here's an example using a cubic filter:

Practical upsampling

- This can also be viewed as:
 - 1.putting the reconstruction filter at the desired location
 - 2.evaluating at the original sample positions
 - 3.taking products with the sample values themselves
 - 4. summing it up

Practical downsampling

- Downsampling is similar, but filter has larger support and smaller amplitude.
- Operationally:
 - 1. Choose filter in downsampled space.
 - 2. Compute the downsampling rate, *d*, ratio of new sampling rate to old sampling rate
 - 3. Stretch the filter by 1/d and scale it down by d
 - 4. Follow upsampling procedure (previous slides) to compute new values

2D resampling

We've been looking at **separable** filters:

$$r_{2D}(x,y) = r_{1D}(x)r_{1D}(y)$$

How might you use this fact for efficient resampling in 2D?

Next class: Image Processing

■ Reading:

Jain, Kasturi, Schunck, Machine Vision.
McGraw-Hill, 1995.
Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4.
(from course reader)

■ Topics:

- Implementing discrete convolution
- Blurring and noise reduction
- Sharpening
- Edge detection