Image processing
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® Jain, Kasturi, Schunck, Machine Vision.
McGraw-Hill, 1995. Sections 4.2-4.4,
4.5(1ntro), 4.5.5, 4.5.6, 5.1-5 4.
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Image processing

B An image processing operation typically defines a new
image g in terms of an existing image f.

® The simplest operations are those that transform each pixel
in 1solation. These pixel-to-pixel operations can be

written:
g(x,y) =1t(f(x,y))

B Examples: threshold, RGB - grayscale

® Note: a typical choice for mapping to grayscale is to apply
the YIQ television matrix and keep the Y.

Y] [0299 0587 0.114][R]
11=10.59 -0275 -0321||G
0| |0212 -0523 0311[|B
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Pixel movement

= Some operations preserve intensities, but move
pixels around in the 1mage

g(x, ) = f(x(x,), y(x, 1))

B Examples: many amusing warps of images

[Show 1mage sequence. ]
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Noise

® [mage processing is also useful for noise reduction and edge
enhancement. We will focus on these applications for the remainder of
the lecture...

= Common types of noise:

® Salt and pepper noise:
contains random
occurrences of black and
white pixels

‘." { i ”'ﬁ ‘.. ,'t B . | B
. ) Original alt and pepper noise
® Impulse noise: contains
random occurrences of

white pixels

® Gaussian noise:
variations in intensity drawn
from a Gaussian normal
distribution

Py

Impulse noise
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Ideal noise reduction
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Practical noise reduction

® How can we “smooth” away noise in a single image?

B [s there a more abstract way to represent this sort of
operation? Of course there is!
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Discrete convolution

® For a digital signal, we define discrete convolution as:

gli] = flil* hli]
= fLiThli- i
= > STl = i)

where ii[i] = h[—i]
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Discrete convolution in 2D

® Similarly, discrete convolution in 2D becomes:

gli.j1= fli.j1% hli. ;]
= >N Ui mli-i'j - j)

of)

- EEf[i’,j']ii[i'—i,j’—j]

where  hli,j]1= h[-i,—j]
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Convolution representation

® Since f and / are defined over finite regions, we can write
them out in two-dimensional arrays:

g2 79 23 1142 120 105 4
10 10 Q G52 12 = a4
10 53 197 46 45 0 0 43
178 135 5 135 191 g9 0 49
2 1 1 29 25 37 0 7T
o g9 144 147 137 102 G2 203
255 252 0 164 123 g2 0 a1
1565 &3 127 17 1 0 Q9 a0
H.E A ¥E
A4 X2 Al
EA St A~

m Note: This is not matrix multiplication!
® Q: What happens at the edges?
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Mean filters

® How can we represent our noise-reducing
averaging filter as a convolution diagram
(know as a mean filter)?
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Eftect of mean filters

Gaussian Salt and pepper
noise noise

3x3

5x5

Tx7
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Gaussian filters

® Gaussian filters weigh pixels based on their distance from
the center of the convolution filter. In particular:

—(i%+j*)/(20%)

C

h[laj] N

®m This does a decent job of blurring noise while preserving
features of the image.

® What parameter controls the width of the Gaussian?

® What happens to the image as the Gaussian filter kernel
gets wider?

B What is the constant C? What should we set it to?
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Efftect of Gaussian filters

Gaussian Salt and pepper
noise noise

3x3

5x5

7x7
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Median filters

® A median filter operates over an mxm
region by selecting the median intensity 1n
the region.

® What advantage does a median filter have
over a mean filter?

m [s a median filter a kind of convolution?
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Effect of median filters

Gaussian Salt and pepper
noise noise

3x3

5x5

Tx7
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Comparison: Gaussian noise

Mean Gaussian Median

3x3

7x7
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Comparison

salt and pepper noise

5x5 &2 E

7x7

Gaussian Median
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Edge detection

® One of the most important uses of 1image
processing 1s edge detection:

=Really easy for humans

EReally difficult for computers

®mFundamental in computer vision

®Important in many graphics applications
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What 1s an edge?

Step

Ramp

Line

Roof

® Q: How might you detect an edge in 1D?
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Gradients

® The gradient 1s the 2D equivalent of the derivative:

(9f of)

VI(x,y)= kax ay}

®m Properties of the gradient
®m [t’s a vector
® Points in the direction of maximum increase of f
® Magnitude is rate of increase

® How can we approximate the gradient in a discrete image?
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Less than 1deal edges

Pixels plotted —® &siss
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Steps 1n edge detection

® Edge detection algorithms typically proceed
in three or four steps:
mFiltering: cut down on noise

® Enhancement: amplify the difference between
edges and non-edges

mDetection: use a threshold operation

mLocalization (optional): estimate geometry of
edges beyond pixels
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Edge enhancement

B A popular gradient magnitude computation 1s the Sobel

operator:
-1 0 1]
s.=(-2 0 2
-1 0 1
1 2 1]
s,=10 0 0
-1 -2 -1

m We can then compute the magnitude of the vector (s,, s,).
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Results of Sobel edge detection
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Second derivative operators

A

f(x)

f'(z) o . threshold

J" ()

®mThe Sobel operator can produce thick edges. Ideally, we’re looking for
infinitely thin boundaries.

mAn alternative approach is to look for local extrema in the first
derivative: places where the change in the gradient is highest.

m(Q: A peak in the first derivative corresponds to what 1n the second
derivative?

®Q: How might we write this as a convolution filter?
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Localization with the Laplacian

B An equivalent measure of the second derivative in 2D 1s
the Laplacian: p p
V()= ayf

® Using the same arguments we used to compute the
gradient filters, we can derive a Laplacian filter to be:

0 1 0
A*=|1 -4 1
0 1 0

m Zero crossings of this filter correspond to positions of
maximum gradient. These zero crossings can be used to
localize edges.
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Original

Laplacian (+128)
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Marching squares

® We can convert these signed values into
edge contours using a “marching squares”
technique:
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Sharpening with the Laplacian

Laplacian (+28)

Origial + aplacian Original - Laplacian
Why does the sign make a difference?
How can you write each filter that makes each bottom image?
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Spectral impact of sharpening

We can look at the impact of sharpening on the Fourier spectrum:

Spatial domain Frequency domain

0 -1 0]
S-A"=|-1 5 -1
0 -1 0
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Summary

® What you should take away from this lecture:
® The meanings of all the boldfaced terms.
® How noise reduction 1s done
= How discrete convolution filtering works
®m The effect of mean, Gaussian, and median filters
® What an image gradient 1s and how it can be computed
® How edge detection 1s done

® What the Laplacian image 1s and how it is used in either edge
detection or image sharpening
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Next time: Affine Transformations

® Topic:
i How do we represent the rotations, translations, etc.
needed to build a complex scene from simpler objects?

B Read:
» Watt, Section 1.1.

Optional:

 Foley, et al, Chapter 5.1-5.5.

e David F. Rogers and J. Alan Adams,
Mathematical Elements for Computer  Graphics, 2nd
Ed., McGraw-Hill, New York, 1990, Chapter 2.
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