Projections and Z-buftfers

o EmmRmEmEEEL

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Reading

® Required:
m Watt, Section 5.2.2 —5.2.4, 6.3, 6.6 (esp. intro and
subsections 1, 4, and 8—10),
B Further reading:
m Foley, et al, Chapter 5.6 and Chapter 6

® David F. Rogers and J. Alan Adams, Mathematical
Elements for Computer Graphics, 2" Ed., McGraw-
Hill, New York, 1990, Chapter 2.

m |. E. Sutherland, R. F. Sproull, and R. A. Schumacker,
A characterization of ten hidden surface algorithms,
ACM Computing Surveys 6(1): 1-55, March 1974.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

2

3D Geometry Pipeline

®m Before being turned into pixels by graphics hardware, a piece of
geometry goes through a number of transformations...

Y1 Y2
Model space
. (Object sgace) Projective transformation,
T T scale, translate
z 22
L scale, translate,
rotate, . Normalized projection space
~ z,
Yw Q World space
== (Object space) Project,
.’ scale, translate
Ly Ys
Zw rotate, translate @ Normalized device space
(Screen space)
d T
Ye E
ye space
o (View space) scale
/
Yi Image space
© T 34 (Window space)
e
/ (Raster space)
Ze (Screen space)
& (Device space)

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 3

>
A

Ay | A
iR \E <~

\ @\«)

$
8
~AUS B~

Projections

® Projections transform points in n-space to m-space, where m<n.

® In 3-D, we map points from 3-space to the projection plane (PP)
along projectors emanating from the center of projection (COP):

COP

y

PP

27

V4

DOP /

S

PP

®m The center of projection is exactly the same as the pinhole in a pinhole

camera.

®m There are two basic types of projections:
m Perspective — distance from COP to PP finite
m Parallel — distance from COP to PP infinite

University of Texas at Austin CS384G - Computer Graphics

Fall 2010 Don Fussell

4

Parallel projections

m For parallel projections, we specify a direction of
projection (DOP) instead of a COP.

B There are two types of parallel projections:
® Orthographic projection — DOP perpendicular to PP
® Oblique projection — DOP not perpendicular to PP
B We can write orthographic projection onto the z =0 plane
with a simple matrix.

o 4. --X-
Y111 0o o

yl=lo 1 0 ol
b _0001_?

® But normally, we do not drop the z value right away. Why

not?
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Properties of parallel projection

m Properties of parallel projection:
mNot realistic looking
mGood for exact measurements

mAre actually a kind of affine transformation
mParallel lines remain parallel
mAngles not (in general) preserved

®Most often used in CAD, architectural

drawings, etc., where taking exact measurement
1S 1important

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

6

® By similar triangles, we can compute how much the x and y
coordinates are scaled:

, d d

x'=——x y'=——y
Z 3

® [Note: Watt uses a left-handed coordinate system, and he looks down
the +z axis, so his PP is at +d.]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 7

&) Homogeneous coordinates revisited

B Remember how we said that affine transformations work
with the last coordinate always set to one.

® What happens if the coordinate 1s not one?
® We divide all the coordinates by W:

X /W
Y/W
Z/W
W IW

:r—*N‘<><:

m [f W = I, then nothing changes.

B Sometimes we call this division step the “perspective
divide.”

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

8

Homogeneous coordinates and perspective projection

B Now we can re-write the perspective projection as a matrix equation:

_ - - T -x- B i
X 1 O 0 0 X
YI[=[0 1 0] 0] Y =l Yy
<
W _O 0 -1/d ()_1 _—Z/d_
®m After division by W, we get: eyl
-—d
x| Z
y'|=|-=d
Bl

B Again, projection implies dropping the z coordinate to give a 2D
image, but we usually keep it around a little while longer.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Projective normalization

m After applying the perspective transformation and
dividing by w, we are free to do a simple parallel
projection to get the 2D 1mage.

® What does this imply about the shape of things
after the perspective transformation + divide?

A
A

AR
?A
¥

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 10

Vanishing points

® What happens to two parallel lines that are not parallel to the
projection plane?

®m Think of train tracks receding into the horizon... %

=

A
: - p v
m The equation foralineis: =p+tv=| "|+1| "’
pZ vZ
1 10 |
x| | p, +tv,
m After perspective transformation we get: |Y |= p,+ v,
W [-(p.+w.)/d

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 11

Vanishing points (cont'd)

® Dividing by W Pty J
'xr' P, + tVZ
|| P+,
g’ p.+1tv,
L .+ 1w yd :
—(p,+tv.)ld wls
m [etting ¢ go to infinity: “jz
. .
. 1
B We get a point that depends only on v

® What happens to the line £ =+ tv?

®m Each set of parallel lines intersect at a vanishing point on
the PP.

® Q: How many vanishing points are there?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 12

Properties of perspective projections

The perspective projection is an example of a projective
transformation.

L Y

/ N\

Here are some properties of projective transformations:
® Lines map to lines
m Parallel lines do not necessarily remain parallel
®m Ratios are not preserved

One of the advantages of perspective projection is that size varies
inversely with distance — looks realistic.

A disadvantage is that we can't judge distances as exactly as we can
with parallel projections.

Q: Why did nature give us eyes that perform perspective
projections?
Q: Do our eyes “see in 3D”?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 13

/-buftfer

® We can use projections for hidden surface elimination.

® The Z-buffer' or depth buffer algorithm [Catmull, 1974] is probably the
simplest and most widely used of these techniques.

®m Here is pseudocode for the Z-buffer hidden surface algorithm:

for each pixel (i,j) do
Z-buffer [i,j] < FAR
Framebuffer[i,j] < <background color>
end for
for each polygon A do
for each pixel in A do
Compute depth z and shade s of A at (i,))
if z > Z-buffer [i,j] then
Z-buffer [i,j] <= z
Framebuffer[i,j] < s
end if
end for
end for

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 14

/-bufter, cont'd

®m The process of filling in the pixels inside of a polygon is called
rasterization.

® During rasterization, the z value and shade s can be computed
incrementally (fast!).

(901, Y1, 2’1)
Yi p (RlaGlyBl)

A
\

W/
7

(1’2, Y2, 29)
(RQ, G?) B:)

(ZI)3, Y3, 23)
(R3,G3, Bs)

-
>
Z;

Curious fact:

¢ Described as the “brute-force image space algorithm” by [SSS]

¢+ Mentioned only in Appendix B of [SSS] as a point of comparison
for huge memories, but written off as totally impractical.

Today, Z-buffers are commonly implemented in hardware.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

15

Ray tracing vs. Z-Buifer

Ray tracing:

for each ray {
for each object {
test for intersection

b
b

Z-Buffer:

for each object {
project onto screen;
for each ray {
test for intersection
b

h

In both cases, optimizations are applied to the inner loop.

Biggest differences:
- ray order vs. object order
- Z-buffer does some work in screen space
- Z-buffer restricted to rays from a single
center of projection!

University of Texas at Austin CS384G - Computer Graphics

Fall 2010 Don Fussell

16

Gouraud vs. Phong interpolation

® Does Z-buffer graphics hardware do a full shading
calculation at every point? Not in the past, but
this has changed!

B Smooth surfaces are often approximated by
polygonal facets, because:

® Graphics hardware generally wants polygons (esp.
triangles).
B Sometimes it easier to write ray-surface intersection
algorithms for polygonal models.
® How do we compute the shading for such a
surface?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 17

Faceted shading

B Assume each face has a constant normal:

® For a distant viewer and a distant light source,
how will the color of each triangle vary?

B Result: faceted, not smooth, appearance.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

18

Gouraud interpolation

m To get a smoother result that 1s easily performed in hardware, we can
do Gouraud interpolation.

. N(l
®m Here’s how it works: -
¢ Compute normals at the vertices.
¢ Shade only the vertices. N
¢ Interpolate the resulting vertex colors. |
Shade
!
Ly
Ib
I
)
Interpolate
'

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 19

Gouraud interpolation, cont'd

B Gouraud interpolation has significant limitations.
+[f the polygonal approximation is too coarse, we can miss specular highlights.

*We will encounter Mach banding (derivative discontinuity enhanced by human eye).

¢ Alas, this is usually what graphics hardware supported until very recently.
¢ But new graphics hardware supports...

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 20

Phong interpolation

B To get an even smoother result with fewer artifacts, we can perform
Phong interpolation.
®m Here’s how it works: N,
1. Compute normals at the vertices. Ny
2. Interpolate normals and normalize.

3. Shade using the interpolated normals.

:

Interpolate

l

N

Shade

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 21

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 22

Texture mapping and the z-buffer

®m Texture-mapping can also be handled in z-buffer algorithms.
® Method:

B Scan conversion is done in screen space, as usual
®m Each pixel is colored according to the texture
®m Texture coordinates are found by Gouraud-style interpolation

(3:17 Y1, Zl)

Yi A (G By) u A
(11 Ul)] ,"‘A/,- . (ul, ’Ul)
7 \ b
/ (U,Q,UQ) &:: ~’\’ :N,‘ '7".
(:CQv Y2, 22‘)
(Ra, G, By
1
(ug, v2)
K\‘1 (1‘37 Ys, 23)
I (R37 G3J B3)
(U3,’03) _
z "y

® Note: Mapping is more complicated if you want to do perspective
right!
- linear in world space != linear in screen space
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Antialiasing textures

® If you render an object with a texture map using point-sampling, you
can get aliasing:

From Crow, SIGGRAPH '84
B Proper antialiasing requires area averaging over pixels:

From Crow, SIGGRAPH '84

® In some cases, you can average directly over the texture pixels to do
the anti-aliasing.
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 24

Computing the average color

® The computationally difficult part 1s summing over the
covered pixels.
m Several methods have been used.

® The simplest is brute force:

® Figure out which texels are covered and add up their colors to
compute the average.

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 25

Mipmaps

m A faster method is mip maps developed by Lance Williams in 1983:
® Stands for “multum in parvo” — many things in a small place
m Keep textures prefiltered at multiple resolutions

® Has become the graphics hardware standard

128x128 64x64 g i 8 Ix1
e
fo i L TG
5 2540
sl e

magnify

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

26

Mipmap pyramid

® The mip map hierarchy can be thought of as an image pyramid:
m Level 0 (T[1,)]) 1s the original image.
m Level 1 (T

(1]
m Level 2 (T,[1,)]) averages over 4x4 neighborhoods of original
3[1,]]

J]1) averages over 2x2 neighborhoods of original.

®m Level 3 (T;[i,j]) averages over 8x8 neighborhoods of original

® What’s a fast way to pre-compute the texture map for each level?
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Mipmap resampling

Filter size v 7 T
8x8 — / i 2
5x5 ¢ Va T
4x4 — /o Vo)
S u

® What would the mipmap return for an average over a 5 X 5
neighborhood at location (u,,v,)?

B How do we measure the fractional distance between levels?

® What if you need to average over a non-square region?
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 28

Summed area tables

B A more accurate method than mipmaps 1s summed area
tables invented by Frank Crow 1n 1984.

m Recall from calculus:

[feode= [fode- [Fxds

m m k
m I|n discrete form: Y flil= Y fli1- Y £l
i=k i=0 i=0

®m Q: If we wanted to do this real fast, what might we pre-
compute?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

29

Summed area tables (cont’d)

® We can extend this idea to 2D by creating a table, S[i.j], that contains
the sum of everything below and to the left.

Sli, j1

| r

® Q: How do we compute the average over a region from (/, b) to (r, ¢)?

®m Characteristics:
B Requires more memory and precision
®m Gives less blurry textures

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 30

Comparison of techniques

Point sampled

MIP-mapped

Summed area table

Figure 5: CheckerBoards mapped onto a square showing vertically compressed texture.

From Crow, SIGGRAPH '84
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

31

Cost of Z-buffering

m Z-buffering is the algorithm of choice for hardware
rendering (today), so let’s think about how to make it run
as fast as possible...

® The steps involved in the Z-buffer algorithm are:

Send a triangle to the graphics hardware.

Transform the vertices of the triangle using the modeling matrix.
Transform the vertices using the projection matrix.

Set up for incremental rasterization calculations

DB W

. Rasterize
(generate “fragments” = potential pixels)

=

Shade at each fragment
7. Update the framebuffer according to z.

B What is the overall cost of Z-buffering?

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 32

Cost of Z-buffering, cont’d

B We can approximate the cost of this method as:

k, v, +k,. v +k, t+k, . (dmz)

xform ~ xform setup

where:
ki, = bus cost to send a vertex
Vius = number of vertices sent over the bus

k

= cost of transforming a vertex

xform

Vyform — NUumber of vertices transformed
ksetup = cost of setting up for rasterization
t = number of triangles being rasterized
K hade = cost of shading a fragment
d = depth complexity

(average times a pixel is covered)
m? = number of pixels in frame buffer

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 33

Accelerating Z-buffers

® (G1ven this cost function:
K, Vi K Vv +k, t+k, . (dmz)

xform = xform setup

what can we do to accelerate Z-buffering?

Accel method Vied V t d nm

xform

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 34

Next class: Visual Perception

® Topic:

How does the human visual system?

How do humans perceive color?

How do we represent color in computations?

B Read:

 Glassner, Principles of Digital Image Synthesis,
pp. 5-32. [Course reader pp.1-28]

* Watt , Chapter 15.

* Brian Wandell. Foundations of Vision. Sinauer
Associates, Sunderland, MA, pp. 45-50 and
69-97, 1995.

[Course reader pp. 29-34 and pp. 35-63]

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 35

