
University of Texas at Austin   CS384G - Computer Graphics   Fall 2008   Don Fussell

Sampling and Reconstruction



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 2

Reading

Required:
Watt, Section 14.1

Recommended:
Ron Bracewell, The Fourier Transform and Its
Applications, McGraw-Hill.
Don P. Mitchell and Arun N. Netravali,
“Reconstruction Filters in Computer Computer
Graphics ,” Computer Graphics, (Proceedings
of SIGGRAPH 88). 22 (4), pp. 221-228, 1988.



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 3

What is an image?

We can think of an image as a function, f, from R2 to R:
f( x, y ) gives the intensity of a channel at position ( x, y )
Realistically, we expect the image only to be defined over a
rectangle, with a finite range:

f: [a,b]x[c,d]  [0,1]

A color image is just three functions pasted together.  We
can write this as a “vector-valued” function:

We’ll focus in grayscale (scalar-valued) images  for now.

( , )

( , ) ( , )

( , )

r x y

f x y g x y

b x y

! "
# $

= # $
# $% &



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 4

Images as functions



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 5

Digital images

In computer graphics, we usually create or operate on
digital (discrete) images:

Sample the space on a regular grid
Quantize each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:
f[i ,j] = Quantize{ f(i Δ, j Δ) }



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 6

Motivation: filtering and resizing

What if we now want to:
smooth an image?
sharpen an image?
enlarge an image?
shrink an image?

Before we try these operations, it’s helpful
to think about images in a more
mathematical way…



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 7

Fourier transforms

We can represent a function as a linear combination
(weighted sum) of sines and cosines.
We can think of a function in two complementary ways:

Spatially in the spatial domain
Spectrally in the frequency domain

The Fourier transform and its inverse convert between
these two domains:

Frequency
domain

Spatial
domain

! 

F(s) = f (x)e
" i 2# sx

"$

$

% dx

! 

f (x) = F(s)e
i 2" sx

#$

$

% ds



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 8

Fourier transforms (cont’d)

Where do the sines and cosines come in?

f(x) is usually a real signal, but F(s) is generally
complex:

If f(x) is symmetric, i.e., f(x) = f(-x)), then F(s) =
Re(s).  Why?

Frequency
domain

Spatial
domain

! 

F(s) = f (x)e
" i 2# sx

"$

$

% dx

! 

f (x) = F(s)e
i 2" sx

#$

$

% ds

! 

F(s) = Re(s) " iIm(s) = F(s)e
"i 2# s



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 9

1D Fourier examples



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 10

2D Fourier transform

Frequency
domain

Spatial
domain

Spatial domain Frequency domain

! 

F(sx,sy ) = f (x,y)e
" i 2# sxx

"$

$

%
"$

$

% e
"is# syydxdy

! 

f (x,y) = F(sx,sy )e
i 2" sxx

#$

$

%
#$

$

% e
i 2" syydsxdsy

! 

f (x,y)

! 

F(sx,sy )



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 11

2D Fourier examples

Spatial 
domain

Frequency 
domain

! 

f (x,y)

! 

F(sx,sy )



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 12

Convolution

One of the most common methods for filtering a
function is called convolution.
In 1D, convolution is defined as:

where   

! 

) 
h (x) = h("x)

  

! 

g(x) = f (x) * h(x)

= f ( " x )h(x # " x )d " x 
#$

$

%

= f ( " x )
) 
h ( " x # x)d " x 

#$

$

%



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 13

Convolution properties

Convolution exhibits a number of basic, but
important properties.
Commutativity:

Associativity:

Linearity:

! 

a(x)"b(x) = b(x)" a(x)

! 

[a(x)"b(x)]"c(x) = a(x)"[b(x)"c(x)]

! 

a(x)"[k # b(x)] = k # [a(x)"b(x)]

a(x)" (b(x) + c(x)) = a(x)"b(x) + a(x)"c(x)



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 14

Convolution in 2D

In two dimensions, convolution becomes:

where

* =

f(x,y) h(x,y) g(x,y)

  

! 

) 
h (x,y) = h("x,"y)

  

! 

g(x,y) = f (x,y)" h(x,y)

= f ( # x , # y )h(x $ # x )(y $ # y )d # x d # y 
$%

%

&
$%

%

&

= f ( # x , # y )
) 
h ( # x $ x)( # y $ y)d # x d # y 

$%

%

&
$%

%

&



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 15

Convolution theorems

Convolution theorem: Convolution in the
spatial domain is equivalent to
multiplication in the frequency domain.

Symmetric theorem: Convolution in the
frequency domain is equivalent to
multiplication in the spatial domain.! 

f " h# F $H

! 

f " h# F $H



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 16

Convolution theorems

Theorem

Proof (1)
)(*)()(

)()()*(

)(*)()(

)()()*(

GFFG

GFGF

gffg

gfgf

1-1-1-

1-1-1-

FFF

FFF

FFF

FFF

=

=

=

=

  

! 

F( f * g) = f ( " t )g(t # " t )d " t e
#i$ t

dt
#%

%

&
#%

%

&

= f ( " t )g(t # " t )e
# i$ " t 

e
# i$ ( t# " t )

dtd " t 
#%

%

&
#%

%

&

= f ( " t )g( " " t )e
# i$ " t 

e
# i$ " " t 

d " " t d " t 
#%

%

&
#%

%

&

= f ( " t )e
# i$ " t 

d " t g( " " t )e
#i$ " " t 

d " " t 
#%

%

&
#%

%

&

= F( f )F(g)



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 17

1D convolution theorem example



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 18

2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 19

The delta function

The Dirac delta function, δ(x), is a handy
tool for sampling theory.
It has zero width, infinite height, and unit
area.
 It is usually drawn as:



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 20

Sifting and shifting

For sampling, the delta function has two important
properties.
Sifting:

Shifting:

! 

f (x)"(x # a) = f (a)"(x # a)

! 

f (x)"#(x $ a) = f (x $ a)



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 21

The shah/comb function
A string of delta functions is the key to sampling.
The resulting function is called the shah or comb
function:

which looks like:

Amazingly, the Fourier transform of the shah
function takes the same form:

where so = 1/T.

! 

III(x) = "(x # nT)
n= 0

$

%

! 

III(s) = "(s# ns
0
)

n= 0

$

%



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 22

Now, we can talk about sampling.

The Fourier spectrum gets replicated by spatial sampling!
How do we recover the signal?

Sampling



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 23

Sampling and reconstruction



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 24

Sampling and reconstruction in 2D



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 25

Sampling theorem

This result is known as the Sampling Theorem
and is generally attributed to Claude Shannon
(who discovered it in 1949) but was discovered
earlier, independently by at least 4 others:
A signal can be reconstructed from its samples without

loss of information, if the original signal has no energy in
frequencies at or above ½ the sampling frequency.
For a given bandlimited function, the minimum
rate at which it must be sampled is the Nyquist
frequency.



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 26

Reconstruction filters

The sinc filter, while “ideal”, has two drawbacks:
 It has large support (slow to compute)
 It introduces ringing in practice

We can choose from many other filters…



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 27

Cubic filters
Mitchell and Netravali (1988) experimented with cubic filters,
reducing them all to the following form:

The choice of B or C trades off between being too blurry or having too
much ringing.  B=C=1/3 was their “visually best” choice.
The resulting reconstruction filter is often called the “Mitchell filter.”

! 

r(x) =
1

6

(12 " 9B " 6C) x
3

+ ("18 +12B + 6C) x
2

+ (6 " 2B)

(("B " 6C) x
3

+ (6B + 30C) x
2

+ ("12B " 48C) x + (8B + 24C)

0

# 

$ 
% 

& 
% 

x <1

1' x < 2

otherwise



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 28

Reconstruction filters in 2D

We can also perform reconstruction in 2D…



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 29

Aliasing

Sampling rate is too low



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 30

Aliasing

What if we go below the Nyquist frequency?



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 31

Anti-aliasing

Anti-aliasing is the process of removing the frequencies
before they alias.



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 32

We can fill the “magic” box with analytic pre-
filtering of the signal:

Why may this not generally be possible?

Anti-aliasing by analytic prefiltering



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 33

Filtered downsampling
Alternatively, we can sample the image at a higher rate, and then filter that
signal:

We can now sample the signal at a lower rate.  The whole process is called
filtered downsampling or supersampling and averaging down.



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 34

Practical upsampling
When resampling a function (e.g., when resizing an image), you do not
need to reconstruct the complete continuous function.
For zooming in on a function, you need only use a reconstruction filter
and evaluate as needed for each new sample.
Here’s an example using a cubic filter:



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 35

Practical upsampling

This can also be viewed as:
1.putting the reconstruction filter at the desired location
2.evaluating at the original sample positions
3.taking products with the sample values themselves
4. summing it up

Important: filter should always be normalized!



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 36

Practical downsampling
Downsampling is similar, but filter has larger support and smaller
amplitude.
Operationally:

1. Choose filter in downsampled space.
2. Compute the downsampling rate, d, ratio of new sampling rate to old

sampling rate
3. Stretch the filter by 1/d and scale it down by d
4. Follow upsampling procedure (previous slides) to compute new values



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 37

2D resampling
We’ve been looking at separable filters:

How might you use this fact for efficient resampling in 2D?
! 

r
2D (x,y) = r

1D (x)r1D (y)



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 38

Next class: Image Processing

Reading:
Jain, Kasturi, Schunck, Machine Vision.
McGraw-Hill, 1995.
Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4.
  (from course reader)

Topics:
- Implementing discrete convolution
- Blurring and noise reduction
- Sharpening
- Edge detection


