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Sampling and Reconstruction
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Reading

Required:
Watt, Section 14.1

Recommended:
Ron Bracewell, The Fourier Transform and Its
Applications, McGraw-Hill.
Don P. Mitchell and Arun N. Netravali,
“Reconstruction Filters in Computer Computer
Graphics ,” Computer Graphics, (Proceedings
of SIGGRAPH 88). 22 (4), pp. 221-228, 1988.
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What is an image?

We can think of an image as a function, f, from R2 to R:
f( x, y ) gives the intensity of a channel at position ( x, y )
Realistically, we expect the image only to be defined over a
rectangle, with a finite range:

f: [a,b]x[c,d]  [0,1]

A color image is just three functions pasted together.  We
can write this as a “vector-valued” function:

We’ll focus in grayscale (scalar-valued) images  for now.
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Images as functions
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Digital images

In computer graphics, we usually create or operate on
digital (discrete) images:

Sample the space on a regular grid
Quantize each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:
f[i ,j] = Quantize{ f(i Δ, j Δ) }
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Motivation: filtering and resizing

What if we now want to:
smooth an image?
sharpen an image?
enlarge an image?
shrink an image?

Before we try these operations, it’s helpful
to think about images in a more
mathematical way…
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Fourier transforms

We can represent a function as a linear combination
(weighted sum) of sines and cosines.
We can think of a function in two complementary ways:

Spatially in the spatial domain
Spectrally in the frequency domain

The Fourier transform and its inverse convert between
these two domains:

Frequency
domain

Spatial
domain

! 

F(s) = f (x)e
" i 2# sx

"$

$

% dx

! 

f (x) = F(s)e
i 2" sx

#$

$

% ds
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Fourier transforms (cont’d)

Where do the sines and cosines come in?

f(x) is usually a real signal, but F(s) is generally
complex:

If f(x) is symmetric, i.e., f(x) = f(-x)), then F(s) =
Re(s).  Why?

Frequency
domain

Spatial
domain

! 

F(s) = f (x)e
" i 2# sx

"$

$

% dx

! 

f (x) = F(s)e
i 2" sx

#$

$

% ds

! 

F(s) = Re(s) " iIm(s) = F(s)e
"i 2# s
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1D Fourier examples
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2D Fourier transform

Frequency
domain

Spatial
domain

Spatial domain Frequency domain

! 

F(sx,sy ) = f (x,y)e
" i 2# sxx

"$

$

%
"$

$

% e
"is# syydxdy

! 

f (x,y) = F(sx,sy )e
i 2" sxx

#$

$

%
#$

$

% e
i 2" syydsxdsy

! 

f (x,y)

! 

F(sx,sy )
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2D Fourier examples

Spatial 
domain

Frequency 
domain

! 

f (x,y)

! 

F(sx,sy )
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Convolution

One of the most common methods for filtering a
function is called convolution.
In 1D, convolution is defined as:

where   

! 

) 
h (x) = h("x)

  

! 

g(x) = f (x) * h(x)

= f ( " x )h(x # " x )d " x 
#$

$

%

= f ( " x )
) 
h ( " x # x)d " x 

#$

$

%
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Convolution properties

Convolution exhibits a number of basic, but
important properties.
Commutativity:

Associativity:

Linearity:

! 

a(x)"b(x) = b(x)" a(x)

! 

[a(x)"b(x)]"c(x) = a(x)"[b(x)"c(x)]

! 

a(x)"[k # b(x)] = k # [a(x)"b(x)]

a(x)" (b(x) + c(x)) = a(x)"b(x) + a(x)"c(x)
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Convolution in 2D

In two dimensions, convolution becomes:

where

* =

f(x,y) h(x,y) g(x,y)

  

! 

) 
h (x,y) = h("x,"y)

  

! 

g(x,y) = f (x,y)" h(x,y)

= f ( # x , # y )h(x $ # x )(y $ # y )d # x d # y 
$%

%

&
$%

%

&

= f ( # x , # y )
) 
h ( # x $ x)( # y $ y)d # x d # y 

$%

%

&
$%

%

&
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Convolution theorems

Convolution theorem: Convolution in the
spatial domain is equivalent to
multiplication in the frequency domain.

Symmetric theorem: Convolution in the
frequency domain is equivalent to
multiplication in the spatial domain.! 

f " h# F $H

! 

f " h# F $H
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Convolution theorems

Theorem

Proof (1)
)(*)()(

)()()*(

)(*)()(

)()()*(

GFFG

GFGF

gffg

gfgf

1-1-1-

1-1-1-

FFF

FFF

FFF

FFF

=

=

=

=

  

! 

F( f * g) = f ( " t )g(t # " t )d " t e
#i$ t

dt
#%

%

&
#%

%

&

= f ( " t )g(t # " t )e
# i$ " t 

e
# i$ ( t# " t )

dtd " t 
#%

%

&
#%

%

&

= f ( " t )g( " " t )e
# i$ " t 

e
# i$ " " t 

d " " t d " t 
#%

%

&
#%

%

&

= f ( " t )e
# i$ " t 

d " t g( " " t )e
#i$ " " t 

d " " t 
#%

%

&
#%

%

&

= F( f )F(g)
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1D convolution theorem example



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 18

2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|



University of Texas at Austin    CS384G  -   Computer Graphics     Fall 2008   Don Fussell 19

The delta function

The Dirac delta function, δ(x), is a handy
tool for sampling theory.
It has zero width, infinite height, and unit
area.
 It is usually drawn as:
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Sifting and shifting

For sampling, the delta function has two important
properties.
Sifting:

Shifting:

! 

f (x)"(x # a) = f (a)"(x # a)

! 

f (x)"#(x $ a) = f (x $ a)
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The shah/comb function
A string of delta functions is the key to sampling.
The resulting function is called the shah or comb
function:

which looks like:

Amazingly, the Fourier transform of the shah
function takes the same form:

where so = 1/T.

! 

III(x) = "(x # nT)
n= 0

$

%

! 

III(s) = "(s# ns
0
)

n= 0

$

%
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Now, we can talk about sampling.

The Fourier spectrum gets replicated by spatial sampling!
How do we recover the signal?

Sampling
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Sampling and reconstruction
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Sampling and reconstruction in 2D
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Sampling theorem

This result is known as the Sampling Theorem
and is generally attributed to Claude Shannon
(who discovered it in 1949) but was discovered
earlier, independently by at least 4 others:
A signal can be reconstructed from its samples without

loss of information, if the original signal has no energy in
frequencies at or above ½ the sampling frequency.
For a given bandlimited function, the minimum
rate at which it must be sampled is the Nyquist
frequency.
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Reconstruction filters

The sinc filter, while “ideal”, has two drawbacks:
 It has large support (slow to compute)
 It introduces ringing in practice

We can choose from many other filters…
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Cubic filters
Mitchell and Netravali (1988) experimented with cubic filters,
reducing them all to the following form:

The choice of B or C trades off between being too blurry or having too
much ringing.  B=C=1/3 was their “visually best” choice.
The resulting reconstruction filter is often called the “Mitchell filter.”

! 

r(x) =
1

6

(12 " 9B " 6C) x
3

+ ("18 +12B + 6C) x
2

+ (6 " 2B)

(("B " 6C) x
3

+ (6B + 30C) x
2

+ ("12B " 48C) x + (8B + 24C)

0

# 

$ 
% 

& 
% 

x <1

1' x < 2

otherwise
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Reconstruction filters in 2D

We can also perform reconstruction in 2D…
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Aliasing

Sampling rate is too low
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Aliasing

What if we go below the Nyquist frequency?
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Anti-aliasing

Anti-aliasing is the process of removing the frequencies
before they alias.
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We can fill the “magic” box with analytic pre-
filtering of the signal:

Why may this not generally be possible?

Anti-aliasing by analytic prefiltering
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Filtered downsampling
Alternatively, we can sample the image at a higher rate, and then filter that
signal:

We can now sample the signal at a lower rate.  The whole process is called
filtered downsampling or supersampling and averaging down.
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Practical upsampling
When resampling a function (e.g., when resizing an image), you do not
need to reconstruct the complete continuous function.
For zooming in on a function, you need only use a reconstruction filter
and evaluate as needed for each new sample.
Here’s an example using a cubic filter:
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Practical upsampling

This can also be viewed as:
1.putting the reconstruction filter at the desired location
2.evaluating at the original sample positions
3.taking products with the sample values themselves
4. summing it up

Important: filter should always be normalized!
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Practical downsampling
Downsampling is similar, but filter has larger support and smaller
amplitude.
Operationally:

1. Choose filter in downsampled space.
2. Compute the downsampling rate, d, ratio of new sampling rate to old

sampling rate
3. Stretch the filter by 1/d and scale it down by d
4. Follow upsampling procedure (previous slides) to compute new values
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2D resampling
We’ve been looking at separable filters:

How might you use this fact for efficient resampling in 2D?
! 

r
2D (x,y) = r

1D (x)r1D (y)
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Next class: Image Processing

Reading:
Jain, Kasturi, Schunck, Machine Vision.
McGraw-Hill, 1995.
Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4.
  (from course reader)

Topics:
- Implementing discrete convolution
- Blurring and noise reduction
- Sharpening
- Edge detection


